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1 Introduction

Our 4 bit computer system can execute 28 instructions. Each instruction requires only
1.4 clock cycles on average. The entire system consists of a 2 stage pipeline — instruction
fetch & decode unit and 4 bit execution unit. The execution unit has a shared 4 bit data
bus. The memory system is organized as Harvard architecture. That is instruction
memory and data memories are separate units. Programs are stored in instruction
memory and data in data memory. Data memory also contains the program stack. All
instructions are either 1 or 2 bytes long. Some instructions require 1 clock cycle on
average and others require 2 clock cycles on average. The computer can also
communicate with the external devices through the input and output port registers. The
instruction set contains all types of instructions which generalize the computer to
execute any kind of program. However the 8 bit address bus restricts the program
length to be within 256 Bytes. The 4 bit arithmetic and logic unit can perform addition
and subtraction and several logical operations.
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2 Block Diagram of Architecture and Control Unit

The entire processor system can be divided into two independent sections.

e Fetch and decode unit
e Execution unit

These two sections organized as a two staged pipeline processes instructions
independently. While execution unit executes an instruction; at the same time fetch
unit fetches an instruction into the instruction register.

e All data values are 4 bit. Although immediate values take out 1 byte of instruction
memory (it is because instruction memory is byte addressable), the higher nibble
contains all zeros, lower nibble contains the actual 4 bit data.

e There are separate memory for instructions and data. Program codes are loaded in
instruction memory. All data writes are written to the data memory. Stack memory
is also data memory.

e The execution unit has a shared 4 bit data bus. All components in the execution unit
share this bus for transferring data. All outputs therefore from execution unit
registers that are connected to the shared bus are 3 states so that one component
does not load the bus while others are using it.

e All the memory address length is 8 bit. However this computer has no explicit
address bus. Because we did not need to share this address bus.
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Block diagram of 4 bit computer
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Description of Important Components

2.1 Fetch and decode unit

This unit supplies instructions in program order to the execution unit. It performs the
following functions:

e Fetches instructions that will be executed next

e Decodes instruction into micro-instructions

e Generates micro-code for executing microinstructions

2.1.1 Program counter register

The program counter register contains the address of the next instruction to be
executed. It is incremented automatically at each clock cycle to contain the next
instruction address or operand address. Sometimes it is directly loaded with address
values by JMP, CALL, RET, JE and JO instructions. The output of the program counter
register is directly fed to the input of the instruction memory.

2.1.2 Instruction memory

Instruction memory is a 256X8 RAM. It has 8 address pins and 8 output pins. So it is byte
addressable. Each byte contains the desired instruction. The read signal of instruction
memory is always activated. Since address inputs are directly connected with the
outputs of program counter register, hence the memory output is always available
without requiring any extra clock cycle. As long as program counter outputs are valid,
memory outputs are also valid. There is no need to write the instruction memory.
Because we used separate memory for data and instruction. Data write and stack writes
occurs on the data memory. Since program code is read only, hence write signal of
instruction memory is deactivated permanently. Only at the start of the simulation
program code needs to be loaded in the instruction RAM.

2.1.3 Instruction register

The instruction register holds the opcode of the instruction that is being executed on
the execution unit. This register is 8 bits long. The instruction register content is directly
fed to the instruction decoder unit to generate the micro-operations for each
instruction.

2.1.4 Instruction memory buffer register

This register is used to hold the content of the second byte for all 2 byte instructions.
The first byte which is the opcode byte is stored in the instruction register. During the
first clock cycle the opcode byte is fetched into the instruction register. During the
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second clock cycle the second byte is fetched and stored in the instruction memory
buffer register. The instruction register is not loaded during the second clock cycle.

2.1.5 MUX1, Data memory address selector
This MUX controls the input to the data memory address. The possible inputs can be

e SPvalue, required in PUSH instruction

e SPvalue + 1, required in POP instruction

e Instruction memory buffer register output, required in indirect data memory
access where data address value is given as second byte of the instruction

2.1.6 Adder for computing PC + 1 and output buffer

This adder computes the value of current program counter + 1. It is required in CALL

instruction where we need to save the address of next instruction to the stack. The 3

state buffer in front of the adder for PC + 1 output is necessary so that the adder output

does not load the data memory output bus while data memory is accessed for other

purpose.

2.1.7 Bidirectional transceiver

e In some instructions we require that the data memory output is to be passed to the
shared data bus.

e In some other instructions we require that shared bus output is to be loaded to the
data memory output bus.

e In other cases the data memory must not load the shared bus while others are
using it

To meet all the above purposes we require a bi-directional 3 state buffer. The bus
transceiver does the same. It has a chip select pin. If this pin is in active it does no load
the bus on both sides. When chip select pin is active, then depending on another pin
(data direction pin), it transfers data from any one side to the other side.

2.1.6 Instruction decoder unit

Instruction decoder unit decodes each instruction according to their type. This is a ROM
that generates the appropriate micro-operation depending on the value in the
instruction register. This decoder actually determines the ROM address at which the
instruction is to be handled. The ROM address thus found generates the control signals
for handling the execution of the instruction. However at the next clock cycle, the
control ROM address might be selected from other sources other than instruction
decoder output as determined by the instruction type and length of clock cycle required
to execute it. The important thing that it does is that it maps many instructions to the
same initial address (all these instructions have same output from the control ROM) of
the ROM since all those instructions have the same control signals in their first clock
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cycle. It reduces number of rows needed for the control ROM thus reducing the ROM
size.

2.1.7 Control unit

Control unit consists of a 32X32 ROM and a 2 bit flip flop. The ROM generates the
control word for each micro-instruction and the 2 bit flip flop stores the next address
selector value which is fed into a MUX selector pins to select control ROM address.

e The full block diagram of control unit is given below:
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The working principle of control unit is as follows:

e  For all instructions, at the first clock cycle the control ROM address is selected from
instruction decoder output.

e The next address selector input from the control ROM output selects the
appropriate next address of the control ROM through the MUX.

e For some 2 cycle instructions, at the second clock cycle the control ROM address
input is selected from the instruction register output. These instructions have same
control signals in their first clock cycle, however different control signals in their
second clock cycle.

e For some other 2 cycle instructions, at the second clock cycle control ROM address
input is selected as the constant value 31. This is because all these instruction have
same control signals in their second clock cycle although they have different control
signals in their first clock cycle.

2.2 Execution unit
The execution unit can perform arithmetic and logic operations, transfer values

between general purpose registers and data memory and input and output port
registers.

2.2.1 Arithmetic and logic unit

This is a 4-bit arithmetic and logic unit that supports the following operations:

10
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e Arithmetic operations —addition, subtraction, increment, decrement and transfer
operation

e Logical operations — logical or, xor, and, compliment operations

The operation of arithmetic logic unit is as determined by the function pins are given
below:

One operand of the arithmetic logic unit is the accumulator register. The other operand
is selected by MUX2. The two selector pins S1, SO of MUX2 selects second operand as
follows:

S1 SO Operand

B register

1

Data memory output

Instruction memory buffer register
output

PR [O|O
R OO

e Immediate operands are selected from instruction memory buffer register output.
e Memory operands are selected from data memory output.

e During NEG instruction value 1 is selected.

e During all other arithmetic and logic instructions B register is the second operand.

2.2.2 Shifter unit

The shifter unit can shift operands 1-bit position either to the left or right. The operation
of the shifter is determined by the two selector pins S1, SO:

S1 SO Operation
0 0 Transfer
0 1 Shift right
1 0 Shift left
1 1 Transfer O

2.2.3 Registers

The entire register set consists of:
e Two general purpose registers Accumulator register and B register

11
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e One program status register or flags register
e Oneinput port register
e One output port register

2.2.3.1 Functions of each register

e Accumulator - For any arithmetic or logic operation one operand is the default
accumulator register and the result also goes to this register.

e B register - This works as a general purpose temporary storage register. We can
move values in and out of this register to the accumulator. This register can also be
selected as the second operand for some arithmetic and logic operations.

e Input port register — The input port register is used for interfacing with devices
outside the computer. This register is used to receive input values from devices like
keyboard or any other device.

e  Output port register — the output port register is used to send data to devices
external to the computer. This device can be either a display or anything.

e Flags register —Stores status of recent arithmetic or logic operation.

2.2.3.2 The status flags register

The status flags of the 4-bit flags register indicate the results of arithmetic and logic
operations such as ADD, SUB, OR, XOR. The status flag functions are:

CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or a borrow
out of the most significant bit of the result; cleared otherwise. This flag
indicates an overflow for the unsigned-integer arithmetic. It is also used

in
shift operations and multiple precision arithmetic.

SF (bit 1) Sign flag — Set equal to the most significant bit of the result which is the
sign bit of the signed integer.

ZF (bit 2) Zero flag — Set it the result is zero; cleared otherwise.

VF (bit 3) Overflow flag — Set if the integer result is too large a positive number or

too small a negative number (excluding the sign bit) to fit in the
destination operand; cleared otherwise. This flag indicates an overflow
for signed integer arithmetic.

e Arithmetic operations modifies all flags
e CFand VF are not changed during logic operations.
e CF can be changed by shift operations such as SHL, SHR
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The status flags allow a single arithmetic or logic operation to produce results for two
different data types: unsigned integers and signed integers.

When performing multiple precision arithmetic on integers, the CF flag is used in
conjunction with add with carry (ADC) and subtract with borrow (SBB) instruction to
propagate a carry or borrow from one computation to the next.

The conditional branch instructions (such as JE, JO) use one or more of the status flags
as condition codes and test them for branching.

13
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3 Addressing Mode

3.1 Instruction length

Length of each instruction is either 1 byte or 2 byte.

Each instruction consists of an opcode byte and optionally followed by an operand byte.

The opcode byte determines the specific instruction. The operand byte may be any of
the following:

e animmediate value
e an address value (used in imp, call instructions)
e an address value for data memory ( used in indirect data addressing)

3.2 Operand addressing modes

Each instruction is either a zero or one or two operand instruction. Some operands are
specified explicitly and others are implicit. The data for a source operand can be located
in:

e the instruction itself (an immediate operand)

e aregister

e adata memory location

e input port

When an instruction returns data to a destination operand it can be returned to:
e aregister

e adata memory location

e output port

3.2.1 Immediate operands

Some instruction use data encoded in the instruction itself as a source operand. These
operands are called immediate operands. For example the following instruction
subtracts immediate value 04H from the accumulator register:

14
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SUB 04H

There are three instructions available now that use immediate operands:
1. SUBimm

2. MOV ACC,imm

3. XORimm

3.2.2 Register operands

For move operations source and destination operand can be either accumulator register
or B register or any of the input or output port register. But for arithmetic and logic
operations one source operand is the default accumulator register and the result is also
stored in the accumulator register. So no destination operand need to be specified. It is
implied in each instruction as the accumulator. The other source operand can be
selected as B register.

3.2.3 Memory operands

Some operands can be directly specified by their address value in data memory where
the operand is located. The actual operand is fetched from the data memory addressed
by the value given in the instruction. For example the following instruction adds the
operand value at data memory location 04H with the accumulator:

ADD [04H]

15
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4 Data Types

4.1 Numeric data types

Each numeric data is a nibble that is four bits long. Only integer data types are

supported. Depending on the interpretation this can be either:

e Signed — All signed operands are represented using two’s compliment
representation. The leftmost bit (bit 3) is the sign bit. For positive number this bit is
zero (0). For negative number this bit is one (1). The range of numbers includes -8
to +7.

e Unsigned — All 4 bits are used to represent the value. The range of numbers
includes 0 to +15.

4.2 Pointer data types

All pointers are addresses to data memory locations. They are 8 bits long. Hence the
total number of locations that can be addressed is 256K Bytes. The total size of the data
segment is therefore also 256K Bytes.

5 Supported Instruction set

Instructions can be divided into the following groups:
e Data transfer instructions

e Arithmetic instructions

e Logical instructions

e Shift instructions

e  Control transfer instructions

e |/Oinstructions

e Stack instructions

e  Miscellaneous instructions

5.1 Data transfer instructions

16
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The data transfer instructions move data between:

e data memory and accumulator

e immediate value and accumulator

e between accumulator and B register or input port register or output port register

1. MOV ACC, B — moves the contents of B register to the accumulator register.

2. MOV B, ACC - moves the contents of accumulator to the B register.

3. LDA [addr] —loads the accumulator with the value at data memory address
specified by addr. The addr value is 8 bits long so that 256K Bytes of data memory
locations can be directly specified by this value.

4. STA [addr] - stores the contents of accumulator register to the data memory
location specified by the addr value.

5. MOV ACC,imm — moves the immediate value to the accumulator register. The

immediate value is given with the instruction. The next byte after the instruction
byte contains this immediate value.

5.2 Arithmetic instructions

1. ADD B — adds the contents of the accumulator with the contents of the B register.
The default destination of the result is the accumulator.

2. ADC B — adds the contents of the accumulator with the B register and contents of
the carry flag.

3. SUB B - subtracts the contents of the B register from the accumulator.

4. SBB B - subtracts the contents of the B register and contents of the carry flag from
the accumulator.

5. CMP B - subtracts the contents of the B register from the contents of the
accumulator. However the result is not stored in the accumulator. Only the flags are
affected.

6. NEG — negates the value of the accumulator. The accumulator value changes to the
two’s compliment of the value previously stored.

7. SUBimm - subtracts the immediate value from the contents of the accumulator.



Design and Simulation of a Pipelined 4 bit Computer A1:5

8. ADD [addr] - adds with the accumulator the value at data memory location
addressed by addr.

Note: All flags are affected during all the above arithmetic instructions.

5.3 Logical instructions

1. ORB - performs a bitwise inclusive OR operation between the accumulator and B
register and stores the result in the accumulator. Each bit of the result is set to 0 if
both corresponding bits of the accumulator and B register are 0; otherwise each bit
issetto 1.

2. XOR imm - performs a bitwise exclusive OR operation between the accumulator
and the immediate value specified by imm. Each bit of the result is set to 0 if both
Corresponding bits are same; otherwise each bit is set to 1.

Note: Carry flag and overflow flags are not affected during these logical operations. The
rest of the flags are affected.

5.4 Shift instructions

1. SHL - shifts the contents of the accumulator 1 bit position to the left. The most
significant bit is saved in the carry flag (thus destroying the previous content of the
carry flag). The least significant bit is 0.

2. SHR - shifts the contents of the accumulator 1 bit position to the right. The
rightmost bit (LSB) is shifted out and saved in the carry flag. The most significant bit
is 0.

5.5 Control transfer instructions

1. JMP addr - transfers program control to a different location in the instruction
memory specified by addr without recording return value. The addr is an 8 bit value
so that this instruction can jump to any location in the memory within 256K Bytes of
instruction memory.

18
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2. JO addr —transfers program control to the specified location if the condition is met
that is if the contents of the overflow (V) flag is 1. Otherwise next instruction after
this instruction will be sequentially executed.

3. JE addr —transfers program control to the specified location if the contents of the
zero flag is 1. Otherwise next instruction after this instruction will be executed
sequentially.

4. CALL addr —transfers program control the location specified by addr. But before
that the address of the next sequential instruction is stored in the stack.

5. RET - loads the program counter with the value from the stack. It first pops the
value from the stack and then stores it in the program counter.

5.6 1/0 instruction

1. IN-thisinstruction transfers contents of the input port register to the accumulator.

2. OUT -this instruction transfers contents of the accumulator to the output port
register.

Miscellaneous instructions

1. NOP - this instruction performs no operation.

2. HLT - this instruction halts the execution of the entire processor.

19
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6 System Functions & Instruction Steps

6.1 Functioning mechanism of the system

After power on the computer system starts execution of the program starting at
memory location 0000 of the instruction memory. Hence the first instruction of the
program must be loaded at this address. After then an unconditional jump instruction
can be used to run programs starting at any other address.

The instruction memory must be loaded with the program to be executed. The data
memory should be loaded with initial data values if program requires. The stack pointer
(SP register) is initially loaded with the value FFH at start up. Note that all data values
and stack pops fetches values from data memory. Stack pointer grows from higher end
(address FF) of the data memory to the lower addresses. After start up contents of any
other register are undefined.

The entire program must end with the HLT instruction. Otherwise processor will not
stop executing instructions and thus no output can be observed.

6.2 Instruction timing diagram

The two stage pipeline architecture allows one instruction in executing while another
instruction is fetched from the instruction memory. Some instructions are executed in
two clock cycles (containing 1 fetch cycle and 1 execution cycle) and others require
three clock cycles (containing 2 fetch cycle and 1 execution cycle).

A two cycle instruction execution requires the following steps:

e Before the first clock cycle occurs, program counter contains the address of the
instruction to be executed. This address value is directly connected to the input
address of instruction memory. Hence the Opcode value is available at the output
of the instruction memory.

e Clock cycle 1- At the first clock cycle (low to high transition) the Opcode value is
loaded in the instruction register. The output of the instruction register is directly
fed to the input of the instruction decoder. Hence decoded output of the decoder is
available before the next clock cycle occurs. The decoded output is fed to the input
of the control ROM which generates the control world before the next clock cycle
occurs.

20
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e Clock cycle 2 — At this clock cycle the instruction is executed. Since control word
was generated before this clock cycle, hence result of arithmetic or logical
operation are also computed before this clock cycle and appears in the shared data
bus. Only the output of the instruction is loaded at the low to high transition of this
clock cycle. Fetch of next instruction also occurs in this clock cycle.

A A
Clock cycle 1: Clock cycle 2:
Fetches opcode Executes

instruction
Fetches next
instruction

A three cycle instruction execution (except the control transfer instructions) requires
the following steps:

e Before the first clock cycle occurs, program counter contains the address of the
instruction to be executed. This address value is directly connected to the input
address of instruction memory. Hence the Opcode value is available at the output
of the instruction memory.

e Clock cycle 1 - At the first clock cycle (low to high transition) the Opcode value (first
byte of the instruction) is loaded in the instruction register. The output of the
instruction register is directly fed to the input of the instruction decoder. Hence
decoded output of the decoder is available before the next clock cycle occurs. The
decoded output is fed to the input of the control ROM which generates the control
world before the next clock cycle occurs.

e Clock cycle 2- At the second clock cycle (low to high transition) second byte of the
instruction is loaded in the instruction memory buffer register (the instruction
register remains unchanged and contains the first byte of this instruction that was
loaded at the previous clock cycle). This can be either an immediate operand or
data memory address operand.

e Clock cycle 3 — At the third clock cycle the instruction is executed. Since control
word was generated before this clock cycle, hence result of arithmetic or logical
operation are also computed before this clock cycle and appears in the shared data
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bus. Only the output of the instruction is loaded at the low to high transition of this
clock cycle. In this clock cycle fetch of next instruction also occurs.

Clock cycle I: Clock cycle 2:
Fetches opcode Fetches operand

Clock cycle 3:
Executes
instruction
Fetches next
instruction

For control transfer instruction (such as JMP, CALL) the following steps occur:

e Clock cycle 1 — same as others.

e Clock cycle 2- At this clock cycle, the program counter is loaded with address value
selected by MUX3 from either instruction memory ( during JMP, JE, JO, CALL
instructions) or data memory ( during RET instruction). In case of CALL instruction,
the address of the next sequential instruction (current program counter value + 1) is
also stored in the stack (data memory) at this clock cycle. The selector pin SO

determines the address value that is loaded to the program counter as follows:

SO

Value

0

Instruction memory output

1

Data memory output

e  Clock cycle 3 — At the third clock cycle no operation is performed. Only the fetch of
the next instruction occurs. This can be considered as a pipeline stall.

22
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A A A

Clock cycle 1: Clock cycle 2: Clock cycle 3:

Fetches opcode Executes Fetches the
instruction Opcode for next

instruction

6.2.1 Actual timing diagram for example program with control signals
explicitly shown:

Consider the following program segment:

Address Instruction
00 IN

01 ADD B

02 SUB 02

04 PUSH

05 ADDB

06 POP

07 JMP 09

The actual timing diagram with control signals are shown below. In each clock pulse (a
low to high transition of the clock signal), some results are stored in some registers and
new control signals are generated according to the fetched instruction. The result of the
previous control signals that are actually loaded in this clock cycle are shown above the
clock cycle line and the control signals that are being generated for new instruction are
shown below the clock cycle line. All control signals are named with their numeric
interpretation (not the actual binary value that is generated). Only the effective control
signals are shown for each clock cycle.



Design and Simulation of a Pipelined 4 bit Computer A1:5

ACC=ACC-02
PC=05

IR = PUSH
opcode

L

pcOp =incr,
MUXI1.S =SP,
DM.W,
SP.Decr ,
Latch4.CE ,
Lathc4.R ,
ACC.OE,
LIR

PC=09

ACC = InPort
PC=01 PC=02 ACC=ACC+B
IR=IN opcode IR=ADD B PC=03 PC=04
opcode IR=SUB imm IR=02
opcode
pc=00 4
pcOp pcOp = incr , pcOp = incr , pcOp = incr ,
=incr , InPort.OE , ALU.op=add, LIR# , pcOp =incr ,
LIR ACC.LD, ALU.OE , ALU.op=sub,
LIR MUX.S=00, ALU.OE,
ACC.LD, MUX.S=11,
LIR ACC.LD,
LIR
PC =06 PC=07 ACC = [SP+1]
IR=ADD B IR=POP SP=SP+1; PC=09
opcode opcode PC=08 IR=JMP
[SP]=ACC IR=JMP
SP=SP -1 opcode
A A
pcOp = incr , pcOp = incr , pcOp = Load,
ALU.op=add, MUXI.S LIR# , pcOP=incr
ALU.OE , =SP+1, MUX3.S=IMO LIR
MUX.S=00, DMR,
ACC.LD, SP.incr ,
LIR Latch4.CE ,
Lathc4.S ,
ACC.LD,
LIR

6.2.2 Time line diagram for example program

Address Instruction
00 IN
01 ADDB

24
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02 MOV B,ACC
03 SUB 02
05 PUSH
06 ADD B
07 POP
Ccl C3 C4 C5 C6 C7 C8 (9
1.IN Fl E
2. ADD B F1 E
3. MOV B,ACC Fl E
4. SUB 02 F1 | F2 E
5. PUSH F1 E
6. ADD B Fl E
7. POP Fl E

F1: Fetch opcode
F2: Fetch operand
E: Execution

C: Clock cycle

Following is another program that has several pipeline stalls due to JMP, CALL and RET

instructions.

Address Instruction
00 IN

01 ADD B

02 CALL 08
08 RET

04 JMP 0A

10 ADD B

25



1. IN

2.ADD B

3. CALL 08

4. RET

5. JMP 0A

6. ADD B

Design and Simulation of a Pipelined 4 bit Computer A1:5

Cl1 C2 C3 C4 C5 Co6 C7 C8 C9
F1 E
F1 E
F1 El S
F1 El S
F1 El S
F1

F1: Fetch opcode
F2: Fetch operand

E: Execution

E1l: Execution and load pc
S: Stall of execution pipeline

C: Clock cycle

6.3 Average CPI

For 2 cycle instructions, due to pipeline architecture clock cycle 2 (of current instruction
executing) and clock cycle 1(of next instruction) are performed parallel in only 1 clock
cycle. For 3 cycle instructions clock cycle 3 (of current instruction executing) and clock
cycle 1(of next instruction) are performed parallel in only 1 clock cycle This reduces the
average clock cycle requires for each instruction executed. The following table shows
the required number of clock cycles for each instruction (considering pipelined

architecture):

Instruction Clock cycles
ADD B 1
ADCB 1
SUB B 1
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SBB B

CMP B

MOV ACC,B

MOV B,ACC

NEG

ORB

IN

ouT

SHL

SHR

LDA [addTr]

STA [addr]

MOV ACC, imm

SUB imm

XOR imm

ADD [addr]

JMP addr

JO addr

JE addr

CALL addr

RET

PUSH

POP

NOP

HLT

RIRIRIRININININININININININN(R(R(R(R|R(R(R|(R|R|R-

=(11*2+17)/28

=14
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7 Opcode and Control Matrix

7.1 Opcode table for all instructions

Instruction Length Opcode (in binary) Opcode(in hex)
(in Byte)
Byte 1 Byte 2 Byte 1 Byte 2
ADD B 1 0000 01
0001
ADCB 1 0000 02
0010
SUB B 1 0000 03
0011
SBB B 1 0000 04
0100
CMP B 1 0000 05
0101
MOV ACC,B 1 0000 06
0110
MOV B,ACC 1 0000 07
0111
NEG 1 0000 08
1000
ORB 1 0000 09
1001
IN 1 0000 0A
1010
ouT 1 0000 0B
1011
SHL 1 0000 0oC
1100
SHR 1 0000 oD
1101
LDA [addr] 2 0000 addr OE addr
1110
STA [addr] 2 0000 addr OF addr
1111
MOV ACC, imm | 2 0001 imm 10 imm
0000
SUB imm 2 0001 imm 11 imm
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0001
XOR imm 2 0001 imm 12 imm
0010
ADD [addr] 2 0001 addr 13 addr
0011
JIMP addr 2 0001 addr 14 addr
0100
JO addr 2 0001 addr 15 addr
0101
JE addr 2 0001 addr 16 addr
0110
CALL addr 2 0001 addr 17 addr
0111
RET 1 0001 18
1000
PUSH 1 0001 19
1001
POP 1 0001 1A
1010
NOP 1 0001 1B
1011
HLT 1 0001 1C
1100
7.3 Control Matrix Sheet
Address(in Value(in
decimal) hex)
0000 00
0001 01
0002 02
0003 03
0004 04
0005 05
0006 06
0007 07
0008 48
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0009 09
0010 0A
0011 0B
0012 0C
0013 0D
0014 1E
0015 1E
0016 1E
0017 1E
0018 1E
0019 1E
0020 14
0021 15
0022 16
0023 17
0024 18
0025 19
0026 1A
0027 1B
0028 80
0029 00
0030 00
0031 00

7.4.1 Pin designations of the control ROM

ROM# | Bit7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bitl BitO

1 PCOp. PCOp. MUX3. LIR MUX1. MUX1. SP. SP.
S1 SO S S1 SO U/D# CEN#

2 Latch3. | Latch3. | ACC. ACC. DM. Latchl. Latch2. Latch4.
OE S/R# OE LD# R/W# OE# OE OE

3 MUX2. | MUX2. | B. B. InPort. OutPort. NS. NS.SO
S1 SO LD# OE OE# LD# S1

4 ALU. ALU. ALU. ALU. CarrySel SHOp. SHOp. Flags.
S2 S1 SO M S1 SO LD#
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PCOp.S1:S0 — these two bits selects the pc operation at the next clock cycle
according to the following table:

S1 | SO | Operation

0 0 Increment Pc

0 1 Load Pc

1 0 Load PcifV=1
1 1 Load PcifZ=1

MUX3.S — this pin selects the value to be loaded into the program counter. If 1
loads pc with the value from instruction memory output; otherwise loads pc from
data memory output.

LIR — Load instruction register. If 1 loads the instruction register with the value of
instruction memory at the next clock cycle.

MUX1.51:S0 — these two bit selects the address that will be the input to the data
memory according to the following table:

S1 | SO | Address input to data memory

0 0 Instruction memory buffer register
0 1 SP

1 0 SP+1

1 1 Unused

SP.U/D# - if 1 increments the stack pointer register at the next clock cycle;
otherwise decrements. Note that this pin is active only when SP.CEN = 1.

SP.CEN — count enable signal for SP. This pin enables SP.U/D# signal.

Latch3.0E — this pin enables the bus transceiver.

Latch3.S/R# - if 1 the bus transceiver sends data (from data memory to the data
bus); otherwise receives data (from data bus to data memory).

ACC.OE — output enable signal for the accumulator register. If active the
accumulator loads the data bus with its contents.

ACC.LD# - load signal for the accumulator register. If active accumulator will be
loaded with the value from data bus at the next clock cycle.

DM.R/W# - data memory read/write# signal. If 1 data memory is selected for read
operation; otherwise data memory is selected for write operation.

Latch1.OE# - this pin enables the output buffer for PC + 1 output latch. This loads
the output of the data memory output bus.

Latch2.0E - this pin enables output buffer for instruction memory buffer register.
This loads the data bus with the value of this register.

Latch4.0E — output enable signal for arithmetic logic and shifter unit.
MUX2.51:50 — these two bits selects the second operand for the arithmetic and
logic operation according to the following table:
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S1 SO Operand

B register

1

Data memory output

Instruction memory buffer register
output

== O |0
= O|r|O

e B.LD# - load signal for B register.

e B.OE - output enable signal for B register.

e InPort.OE# - output enable signal for input port register
e  OutPort.LD# - load signal for output port register.

e NS.S1:S0 - selects next ROM input

e  ALU.S2:S0 - these three bits selects the appropriate ALU operation to be performed.

e ALU.M -selects the mode of ALU operation. If 1 the operation is logic; otherwise
operation will be arithmetic

e CarrySel - this bit determines the carry in signal for ALU along with some other bits.

e SHOP.S1:S0 - selects the shifter operation according to the following table:

S1 SO Operation
0 0 Transfer
0 1 Shift right
1 0 Shift left
1 1 Transfer O

e  Flags.LD# - load signal for flags register.

7.4.1 Contents of the control ROM

address | ROM1 ROM?2 ROM3 ROM4
(inhex) | (inhex) | (inhex) | (inhex)
0000 11 9C 2C 00
0001 11 8D 2C A8
0002 11 8D 2C A0
0003 11 8D 2C 40
0004 11 8D 2C 48
0005 11 9C 2C 40
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0006 11 8C 3C 01
0007 11 BC 0C 01
0008 11 BD 6C A8
0009 11 BD 2C DO
0010 11 8C 24 01
0011 11 BC 28 01
0012 11 8D 2C 0oC
0013 11 8D 2C 0A
0014 11 4C 2C 01
0015 11 34 2C 01
0016 11 8E 2C 01
0017 11 8D EC 40
0018 11 8D EC 50
0019 11 8D AC A8
0020 41 9C 2E 01
0021 81 9C 2E 01
0022 C1 9C 2E 01
0023 44 90 2E 01
0024 6A 9C 2E 01
0025 15 34 2C 01
0026 1A 4C 2C 01
0027 00 00 00 00
0028 00 00 00 00
0029 00 00 00 00
0030 01 9C 2D 01
0031 11 9C 2C 01
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8 Implementation of components

Program counter and Stack pointer register

Program counter and stack pointer are both implemented by counters. We used here 4
bit bi-directional counter IC no 74LS169. It has the following features that made it
special to serve our purpose:

e Up and down capability.

e Parallel load capability.

e Two independent count enable signals
e  One full count signal for cascading

Since we required 8 bit counter for both program counter and stack pointer we
cascaded two 4 bit counters to make 8 bit counter. The TC (pin 15) output pin of the low
nibble counter is connected to the count enable signals of the high nibble counter.

8.1.2 Accumulator register

It is a 4 bit flip flop IC 74LS173. One output of this register is passed to the ALU operand
through a MUX. Another is fed into the IC 74LS126. It is a 3 state buffer. The output of
this buffer is connected to the shared data bus. The output enable signal of this buffer
connects and disconnects the accumulator register output from the shared buffer. Itis
required so that it does not load the bus when another register is loading the bus with
its output.

8.1.3 Bregister

It is same as accumulator register except that one output of this register is fed into the
MUX2.

8.1.4 Arithmetic logic unit
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IC no 74LS181 is a 4 bit arithmetic logic unit. The input and output can be considered as
either active low or active high. However depending on the active low or active high
interpretation of inputs and outputs the carry in signal is just the opposite of what we
consider it to be. For example if we want to perform add with carry operation and we
consider active high inputs and outputs, then carry in signal must be active low. The 4
function selector pins enables various arithmetic and logic operations. One mode select
pin is available to select between arithmetic and logic operations.

8.1.5 Shifter Unit

The shifter unit is implemented by two 74LS153 dual 4-to-1 MUX. Thisis a
combinational shifter and no clock cycle is required to perform shifting.

8.1.6 Input Port Register and Output Port Register

These are both 4 bit flip flop IC 74LS173. The input enable signal and output enable
signal are used for input and output enable.

8.1.7 RAM

For simulation of the circuit, we used circuit maker software. In circuit maker software a
generic RAM1K is available. It has 10 address pins and 8 output pins. We used it in our
simulation for both instruction memory and data memory. Since we required 8 address
bits, the highest 2 bits were left at zero voltage (ground).

8.1.8 PROM

In circuit maker only 1 ROM was available. That is 32X8 bit PROM. It has 5 address pins

and 8 output pins. We needed 32X32 PROM. So we cascaded 4 PROMs. Address pins of
these 4 PROMs are connected together to generate 32 bit output simultaneously.

8.1.8 Bidirectional buffer

Octal 3 state bus transceiver IC 74LS245 was used for connecting the output of the data
memory to the shared bus. For some instructions we have to send data from the data
memory to the shared bus. For some other instruction we have to receive data from the
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shared bus to the data memory (during memory write operations). Hence bi-directional
buffer was necessary. The S/R# pin (pin 1) of this IC controls the direction of data
transfer through the transceiver. If chip select pin is inactive then the device disconnects
the memory output from the data bus so that it does not load the data bus while others
are using the shared bus.

8.2 Name and number of IC’s used

ICH Name Pcs

7415173 Quad 3 state D-type |9
flip flop

7415181 4-bit arithmetic logic | 1
unit

7415126 Quad 3-state buffers | 5

7415153 4 to 1 multiplexer 14

74LS169A 4 bit bidirectional 4
counter

7415273 Octal D-flip flop 1

7415157 Quad2to1l 5
multiplexer

7415245 Octal 3 state 1
transceiver

741S83A 4 bit binary full adder | 4

7415373 Octal 3 state latch 1

741510 3 input NAND 1

74LS04 Hex inverter 3

741S25 Dual 4 input NOR 1
gate

741527 3 input NOR 1

7415138 1-of-8 decoder 1

741508 Quad 2 input AND 1

741532 Quad 2 input OR 1

RAM Generic RAM 1KX8bit | 2

PROM Generic PROM 5
32X8 bit
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9 Problems encountered and discussion

e The main objective of our 4 bit computer design was to reduce number of average
clock cycles for each instruction. To achieve this purpose we had to add additional
hardware in our design. Our initial design was based on Von-Neumann architecture.
Since the instruction set that was supplied to us to implement was as like as Intel’s
instruction set, we followed their architecture. So we used same memory for
instruction and data in our initial design. However, this required some greater
number of clock cycles for some instructions. It is because the clock cycle, at which
we were fetching data from memory for an instruction, we were unable to fetch
Opcode for next instruction at the same clock cycle. This stalled the fetch pipeline.
Later we separated our data memory from instruction memory. This reduced
number of average clock cycles for those instructions to be nearly equal to one.

e Writing to data memory caused us a serious problem in our design. We needed that
the address value at which new data will be written to memory must be stable
before the write signal is generated. It is because if the write signal is generated
before the address value is stable; it might happen that data will be written to
unknown address values. So at first we kept three clock cycles for each memory
write operation. The first clock cycle allowed the address value to be stable, the
actual write occurred in the second clock cycle and the third clock cycle was for de-
activating the write signal before changing the address value. However this
introduced two additional clock cycles for every instruction that involved memory
write operation such as PUSH, STA. However later we solved this problem using the
clock signal for writing. The address value was generated at the low to high
transition of the clock cycle. So we decoded the write signal in the following way:

0 when clock is high write signal is inhibited
0 when clock is low write signal is actived

This ensured half the clock cycle time (after low to high transition and before
high to low transition of the clock) for the address values to be stable before
write signal begins active. So our problem was solved easily by using only
some gates.

e We had to consider each instruction separately to design the computer rather than
thinking generally. Because we were supposed to implement only those instructions
at lowest clock cycles. So we had the option to think each instruction separately to
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reduce clock cycle by adding hardware components. Since we had not to implement
the actual design we were not afraid of too much chips and wires.

Some flip flops have no master reset pin. This caused a big problem for us after
designing the whole system. Because at the start of each new simulation the flip
flop values were unknown. Moreover unnecessary values were being written in
data memory. So we wanted that we would zero our all flip flops at the start of
each simulation by one control signal. But the unavailability of master reset pin of
some flip flops compelled us later to change those. At last we used IC 74LS273
because it had a master reset pin.

We kept two separate memories for instruction and data like MIPS architecture.
However MIPS architecture considers instruction to be of fixed sized. Our
instruction size was not fixed. Some instructions were of 1 byte and others are of 2
bytes. This is dissimilarity between the architecture and instruction set.

At first we had too many control signals (nearly 40) and 6 input lines for the control
ROM. This required that the control ROM should be of size 64X40. Circuit maker
software supports only one ROM that is of size 32X8. We had to cascade 10 ROMs
to generate the all control signals. However later we reduced the input lines from 6
to 5 by considering the following facts:

O first execution cycle of some instructions was doing the same thing
O second cycle of some other instructions was doing the same thing

We used an instruction decoder ROM. For each instruction this generates the
address at which the instruction will be executed. In this way we mapped several
instructions to the same address of the control ROM, since those required the
same control signals. Later we was able to reduce to total number of control
signals to 32. We required only 5 ROMs to implement the control circuit.

NEG instruction required to compute two’s complement of the accumulator. Since 4
bit ALU which we used in our design does not support this function, we fell in a
trouble to perform it in one clock cycle. We could easily compute it in two clock
cycles. In the first cycle we would compute the one’s compliment (ALU supports this
function). In the second clock cycle we would increment the accumulator. However
since all other instructions required at most two clock cycles two execute,
implementing NEG in this way would require NEG three clock cycles. So to reduce it
later we added a MUX and inverter gates in front of ALU input A from the
accumulator to generate the one’s compliment of the accumulator and passing it
directly to the ALU input without using the ALU. This allowed the NEG to be
computed in only one clock cycle.
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At first running a program in the simulator (circuit maker) we required to load the
hex value of the program instructions in instruction memory. However converting
each instruction mnemonic to their hex value was disgusting. We wrote a C
program assembler.c. This program takes as input file and generates an output file
converting each mnemonic instructions to their hex values. The program is given
below:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>

int main(int argc,char * argv([])

{

if(argc!=3)

{
printf("Too many arguments...\n");
exit(0);

}

FILE * in, * out;

in = fopen(argv[1],"r");

out = fopen(argv([2],"w");

if(in==NULL | out==NULL)

{
printf("One or more files could not be opened..\n");
exit(1);

char str[10];
int state;

state = 0;
int address=0;

fprintf(out,"addr: value\n");
fprintf(out," _________ \nll)l_
while(1)
{
if( feof(in) )
{
fclose(in);
fclose(out);

39



Design and Simulation of a Pipelined 4 bit Computer A1:5

break;

}

fscanf(in,"%s",str);
if( strcmp(str,"ADD")==0)

{
fscanf(in,"%s",str);
if( strcmp(str,"B")==0)
{
fprintf(out,"%04d: %02X\n",address,1);
address++;
}
else
{
fprintf(out,"%04d: %02X\n",address,19);
address++;
fprintf(out,"%04d: %s\n",address,str);
address++;
}
}
else if( strcmp(str,"ADC")==0)
{
fscanf(in,"%s",str);
if( strcmp(str,"B")==0)
{
fprintf(out,"%04d: %02X\n",address,2);
address++;
}
else
{
printf("Invalid operand for ADC..\n");
}
}
else if( strcmp(str,"SUB")==0)
{

fscanf(in,"%s",str);
if( strcmp(str,"B")==0)

{
fprintf(out,"%04d: %02X\n",address,3);
address++;

}

else

{

fprintf(out,"%04d: %02X\n",address,17);
address++;

fprintf(out,"%04d: %s\n",address,str);
address++;
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}
}else if( strcmp(str,"SBB")==0)
{
fscanf(in,"%s",str);
if( strcmp(str,"B")==0)
{
fprintf(out,"%04d: %02X\n",address,4);
address++;
}
else
{
printf("Invalid operand for SUB..\n");
}
}
else if( strcmp(str,"CMP")==0)
{
fscanf(in,"%s",str);
if( strcmp(str,"B")==0)
{
fprintf(out,"%04d: %02X\n",address,5);
address++;
}
else
{
printf("Invalid operand for CMP..\n");
}
}
else if( strcmp(str,"MOV")==0)
{

fscanf(in,"%[ 1",str);

fscanf(in,"%[A-Z]",str);

if( strcmp(str,"ACC")==0)
{

fscanf(in,"%[, ]",str); //discand , and spaces if any

fscanf(in,"%s",str);

if( strcmp(str,"B")==0)

{

fprintf(out,"%04d: %02X\n",address,6);

Al

5
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address++;
}
else
{
fprintf(out,"%04d: %02X\n",address,16);
address++;
fprintf(out,"%04d: %s\n",address,str);
address++;
}
}
else if( strcmp(str,"B")==0)
{
fscanf(in," %[, ]",str);
fscanf(in,"%s",str);
if( strcmp(str,"ACC")==0)
{
fprintf(out,"%04d: %02X\n",address,7);
address++;
}
else
{
printf("Invalid operand for MOV B,ACC");
}
}

lelse if( stremp(str,"NEG")==0 )

{
fprintf(out,"%04d: %02X\n",address,8);
address++;

}

else if( strcmp(str,"OR")==0)

{

fscanf(in,"%s",str);
if( strcmp(str,"B")==0)

{
fprintf(out,"%04d: %02X\n",address,9);
address++;

}

else

{
printf("Invalid operand for OR..\n");

}

Jelse if( stremp(str,"IN")==0)
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fprintf(out,"%04d: %02X\n",address,10);
address++;

}else if( stremp(str,"OUT")==0)

{

fprintf(out,"%04d: %02X\n",address,11);
address++;

}else if( stremp(str,"SHL")==0)

{

fprintf(out,"%04d: %02X\n",address,12);
address++;

Jelse if( stremp(str,"SHR")==0)

{

fprintf(out,"%04d: %02X\n",address,13);
address++;

lelse if( stremp(str,"LDA")==0)

{

}

fprintf(out,"%04d: %02X\n",address,14);
address++;
fscanf(in,"%s",str);

fprintf(out,"%04d: %s\n",address,str);
address++;

else if( stremp(str,"STA")==0)

{

fprintf(out,"%04d: %02X\n",address,15);
address++;
fscanf(in,"%s",str);

fprintf(out,"%04d: %s\n",address,str);
address++;

}else if( stremp(str,"XOR")==0)

{

fprintf(out,"%04d: %02X\n",address,18);
address++;
fscanf(in,"%s",str);

fprintf(out,"%04d: %s\n",address,str);
address++;

Al

5
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lelse if( stremp(str,"JMP")==0)

{
fprintf(out,"%04d: %02X\n",address,20);
address++;
fscanf(in,"%s",str);
fprintf(out,"%04d: %s\n",address,str);
address++;

lelse if( strcmp(str,"J0")==0)

{

fprintf(out,"%04d: %02X\n",address,21);
address++;
fscanf(in,"%s",str);

fprintf(out,"%04d: %s\n",address,str);
address++;

}else if( stremp(str,"JE")==0)

{
fprintf(out,"%04d: %02X\n",address,22);
address++;
fscanf(in,"%s",str);
fprintf(out,"%04d: %s\n",address,str);
address++;

lelse if( stremp(str,"CALL")==0)

{

fprintf(out,"%04d: %02X\n",address,23);
address++;

fscanf(in,"%s",str);

fprintf(out,"%04d: %s\n",address,str);
address++;

lelse if( stremp(str,"RET")==0)

{
fprintf(out,"%04d: %02X\n",address,24);
address++;

telse if( stremp(str,"PUSH")==0 )

{
fprintf(out,"%04d: %02X\n",address,25);
address++;

Al

5
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}else if( stremp(str,"POP")==0)

{
fprintf(out,"%04d: %02X\n",address,26);
address++;

lelse if( strcmp(str,"NOP")==0)

{

fprintf(out,"%04d: %02X\n",address,27);
address++;

}else if( stremp(str,"HLT")==0)

{
fprintf(out,"%04d: %02X\n",address,28);
address++;

}

else

{
printf("Opcode mismatch..\n");

}

How to run the assembler program:

First compile the program and build the program to geneate the binary file
assembler.exe

From the command line write: assembler.exe input.txt output.asm

For example assume the following program instructions are written in input.txt file:
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2 input.txt - Motepad
File Edit Format Wiew Help

B=1ES

The program generates the following output.asm file:

B output.asm - Notepad
File Edit Faormat Yiew Help

EOX

addr: value
0000: 0OA
0001: 07
0002: 11
0003: 02
0004: 17
0005: 10
0006: 10
0007: 04
0008: 19
0009: 01
0010: 11
0011: 01
0012: OB

For each address value in the RAM, it shows the hex value that is to be written.
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10 About the simulation tool

We used Circuit maker 2000 for simulating our processor.

E CircuitMaker - [C:\Users\Popel\Desktop\dsd\Abit\SUBMIT~1.CKT 50%]
File Edit View Options Macro

s Simulation Wave Help

E DEEE K+t AFLG @D

2?2 94-n 73 el 2 B

Digital ]

Optians

Step Size 1 =l

Units

C Cycles @ Ticks
¥ Magifostion [& 2]
Speed 0 j

Breakpoint

Tupe
® Level © Edge

Condition
@ and < Or

Mee [

11 Running a program in Simulator

To run a program in the simulation following steps are to be taken.

>> Write the program in assembly

>> Using the assembler tool provided, make the machine code of it.
It will give Address:Code in hex format

>> Before starting the simulation, double click on Instruction Memory,
and write the codes in each address as created by the assembler.
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12 Conclusion

We enjoyed designing this 4 bit computer. The design was revised in
several phases. At first we decided not to use separate data and instruction
memory (use Von Neumann architecture). Then we found that we could
improve the performance greatly by using Harvard architecture. Thus we
ended up with a design, which could execute most of the instructions in
one cycle and rest in two. The simulation part was most exciting. Because it
let us check our own design in action.
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