

Department of CSE, BUET

QMS Support for the

Developer team
Software Quality Assurance

Md. Tanvir Al Amin

 Page 2 of 31

Abstract

QMS (Quality Management System) describes a process which ensures and

demonstrates the quality of the products and services provided by an organization. It is

a set of procedures forming the basis for executing organization’s product/service

delivery mechanisms. These procedures are the documents telling staffs how to follow a

quality system in their daily work. Thus QMS is the management’s means to establish a

uniform and consistent approach to product realization or service delivery. In this report

summarize the relationship between QMS and the developer team in terms of

cooperation and collaboration. We emphasize on what support a developer can expect

to get from QMS.

Introduction

A number of users within and outside of the organization uses the quality management

system. In a software development organization, there are people like Senior

Management, Project Manager, Programmers, Application System Designers, Analysts,

and Staffs, Testers and Marketing Department. Each of them has certain expectations

from the quality management system deployed in the organization.

After the design phase of software project is complete, programmer or a developer is

given the specification (input, output, parameters) for a functional module or a class.

The developer’s job is then to convert it to program code. And this code is taken

through unit testing. Most programmers also carry out modification to the code as

requirements keep evolving.

 Page 3 of 31

Responsibility of the developer team:

The development team is responsible for:

1. Reviewing and commenting on the SQA Plan for the specific project.

2. Implementing the quality program in accordance with the SQA Plan.

3. Resolving and following-up on any quality issues raised by SQA related to
software design and development.

4. Identifying, implementing, and evaluating the quality factors to be
implemented in the software.

5. Implementing the software design/development practices, processes, and
procedures as defined in references and other program/project planning
documents.

Expectation of the developer team

The developer teams can expect from QMS a set of standards or best practices as

described in this article.

Coding Standard

Setting a coding standard is very important. Because, use of coding standards makes

testing and debugging faster. The developers should expect a consistent and logically

intuitive coding standard for the QMS team. Use of coding standards, guidelines makes

testing and debugging easier.

Many source code programming style guides, which often stress readability and

usually language-specific conventions are aimed at reducing the cost of source

code maintenance. Some of the issues that affect code quality include:

 Readability

 Ease of maintenance, testing, debugging, fixing, modification and

portability

 Low complexity

 Low resource consumption: memory, CPU

 Page 4 of 31

 Number of compilation or lint warnings

 Robust input validation and error handling, established by software

fault injection

Some coding standards widely followed are :

 The organization may require that all helper class names start with H.

 All class names should follow ThisIsAClass naming convention and

database tables should follow this_is_a_table convention, i.e. first letters

of different words of a class name are capitalized and there are no

underscore, and different words of a table name are separated by

underscore and there are no capital letters.

 Variables should be named in Hungarian notation. An integer variable

should have a prefix ‘n’, a Boolean variable should have prefix ‘b’ or a

prefix ‘is’. String variables should start with str. So, nLength is

automatically perceived to be an integer, isAvailable is a boolean variable,

strText is a string.

 Variables should be named according to their specific function. For

example names like x, y, z, i, j, m, n should be limited to temporary

variables or iterators and name of the variables representing a major task

should have some semantics.

 All constant names should be capitalized. Example : DEFAULT_SOCKET

 Each routine/function name should describe exactly what the

routine/function does.

 Explicitly comment variables changed out of the normal control flow or

other code likely to break during maintenance. Embedded keywords are

used to point out issues and potential problems. Consider a robot will

parse your comments looking for keywords, stripping them out, and

making a report so people can make a special effort where needed.

Gotcha Keywords

 :TODO: topic

Means there's more to do here, don't forget.

 Page 5 of 31

 :BUG: [bugid] topic
means there's a Known bug here, explain it and optionally give a
bug ID.

 :KLUDGE:
When you've done something ugly say so and explain how you
would do it differently next time if you had more time.

 :TRICKY:
Tells somebody that the following code is very tricky so don't go
changing it without thinking.

 :WARNING:
Beware of something.

 :COMPILER:
Sometimes you need to work around a compiler problem.
Document it. The problem may go away eventually.

 :ATTRIBUTE: value
The general form of an attribute embedded in a comment. You can

make up your own attributes and they'll be extracted.

A sample document of coding standard is included in Appendix A.

Test Unit

The QMS should provide directions to the developer to store away test data and test

outcomes in files. This way, re-programming becomes easier. The developer can retrieve

test data, modify it in response to the requirements change and then apply it again. A

sample document of coding standard is included in Appendix C.

Complexity Management

Layering is the primary technique for reducing complexity in a system. A system should

be divided into layers. Layers should communicate between adjacent layers using well

 Page 6 of 31

defined interfaces. When a layer uses a non-adjacent layer then a layering violation has

occurred.

A layering violation simply means that there is dependency between layers that is

not controlled by a well defined interface. When one of the layers change code

could break.

Repository

The QMS should provide a standard that insists that the names of the software chunks,

which have been produced by a developer, have a correspondence to the files used to

store the source code, object code, test data and the test outcomes for the software. In

other words, the QMS should guide the developers and the configuration manager

towards organizing the entire software project repository. Typically the items in a

project repository are the following:

 Software Requirements Specification Document (SRS document)

 Design/Application Architecture Document.

 Change Requests

 Coding Standards

 Quality Documents

 Test procedures

 Test cases and Test Scripts

 Test logs

 Source Files

 Binary Files

 Model files, Property Files

Conclusion

SQA guidelines help to organize the entire project repository. Use of tools and update

tools are highly recommended by SQA. The QMS should provide a consistent standard

and guideline for versioning management also. A sample development folder is attached

in Appendix B

 Page 7 of 31

BIBLIOGRAPHY

[MAGU93] Steve Maguire, Writing Solid Code, Microsoft Press, Redmond, WA, 1993.

[MCCO93] Steve McConnell, Code Complete, Microsoft Press, Redmond, WA, 1993.

[NINA04] Nina S. Godbole, Software Quality Assurance, Narosha Publishing House, Kolkata,
India

[C++CodStan] C++ Coding Standard, URL :
http://www.possibility.com/Cpp/CppCodingStandard.html

[JavaCodStan] Java Coding Standard, http://www.geosoft.no/development/javastyle.html
[C++BP] Herb Sutter, Andrei Alexandrescu C++ Coding Standards : Rules, Guidelines, and Best
Practices

[Goddard] Information and tools for Software Assurance practitioners in the NASA community
URL: http://sw assurance.gsfc.nasa.gov/disciplines/quality/index.php Goddard Space Flight
Center

http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.geosoft.no/development/javastyle.html

 Page 8 of 31

Appendix A: Sample QMS Coding Standard

CODING STANDARDS

This document is the Coding Guideline document for the generic maintenance process
architecture for the XYZ Corporation project Alpha. This document describes the basic
conventions and coding guidelines to be used for the project. The scope is coding style
and not functional organization. Coders should follow these conventions to the
maximum extent possible in order to ensure a uniform appearance and improve
maintainability.

1.0 COMMENTING TECHNIQUE CHECKLIST

1.1 GENERAL

 Does the source listing contain most of the information about the module?
 Can someone pick up the code and immediately start to understand it?
 Do comments explain the code's intent or summarize what the code does, rather

than just repeating the code?
 Has tricky code been rewritten rather than commented?
 Are comments up to date?
 Are comments clear and correct?
 Does the commenting style allow comments to be easily modified?

1.2 STATEMENTS AND PARAGRAPHS

 Does the code avoid endline comments?
 Do comments focus on why rather than how?
 Do comments prepare the reader for the code to follow?
 Are surprises documented?
 Have abbreviations been avoided?
 Is the distinction between major and minor comments clear?
 Is the code that works around an error or undocumented feature commented?

1.3 DATA DECLARATIONS

 Are units on data declarations commented?
 Are the ranges of values on numeric data commented?
 Are coded meanings commented?
 Are limitations on input data commented?

 Page 9 of 31

 Are flags documented to the bit level?
 Has each global variable been commented where it is declared?
 Are magic numbers documented or, preferably, replaced with named constants

or variables?

1.4 CONTROL STRUCTURES

 Is each control statement commented?
 Are the ends of long or complex control structures commented?

1.5 ROUTINES

 Is the purpose of each routine commented?
 Are other facts about each routine given in comments, when relevant, including

input and output data, interface assumptions, limitations, error corrections,
global effects, and sources of algorithms?

2.0 NAMING CONVENTION CHECKLIST

2.1 GENERAL NAMING CONSIDERATIONS

 Does the name fully and accurately describe what the variable represents?
 Does the name refer to the real-world problem rather than to the programming

language solution?
 Is the name long enough that you don't have to puzzle it out?

2.2 NAMING SPECIFIC KINDS OF DATA

 Are loop index names meaningful (something other than i, j, or k if the loop is
more than one or two lines long or is nested)?

 Have all "temporary" variables been renamed to something more meaningful?
 Are boolean variables named so that their meanings when they are True are

clear?
 Do enumerated-type names include a prefix or suffix that indicates the category -

for example, Color for ColorRed, ColorGreen, ColorBlue, and so on?
 Are named constants named for their abstract entities they represent rather than

the numbers they refer to?

2.3 NAMING CONVENTIONS

 Page 10 of 31

 Does the convention distinguish among local, module, and global data?
 Does the convention distinguish among type names, named constants,

enumerated types, and variables?
 Does the convention identify input-only parameters to routines in languages that

don't enforce them?
 Is the convention as compatible as possible with standard conventions for the

language?
 Are names formatted for readability?

2.4 SHORT NAMES

 Does the code use long names (unless it's necessary to use short ones)?
 Does the code avoid abbreviations that save only one character?
 Are all words abbreviated consistently?
 Are the names pronounceable?
 Are names that could be mispronounced avoided?

2.5 COMMON NAMING PROBLEMS: HAVE YOU AVOIDED...

 ...names that are misleading?
 ...names with similar meanings?
 ...names that are different by only one or two characters?
 ...names that sound similar?
 ...names intentionally misspelled to make them shorter?
 ...names that are commonly misspelled in English?
 ...names that conflict with standard library-routine names or with predefined

variable names? Note: Overloading is permitted and sometimes encouraged in
Ada.

3.0 LAYOUT CHECKLIST

3.1 GENERAL

 Is formatting done primarily to illuminate the logical structure of the code?
 Can the formatting scheme be used consistently?
 Does the formatting scheme result in code that's easy to maintain?
 Does the formatting scheme improve code readability?
 Is the formatting consistent when viewed with a text editor in both UNIX and MS-

DOS?
 Have all tabs been eliminated?

 Page 11 of 31

3.2 CONTROL STRUCTURES

 Does the code avoid double indented begin-end ({ }) pairs?
 Are complicated expressions formatted for readability?
 Are single-statement blocks formatted consistently?
 Are case statements formatted in a way that's consistent with the formatting of

other control structures?

3.3 INDIVIDUAL STATEMENTS

 Are continuation lines indented sensibly?
 Are groups of related statements aligned?
 Are groups of unrelated statements unaligned?
 Does each line contain at most one statement?
 Is there at most one data declaration per line?

3.4 COMMENTS

 Are the comments indented the same number of spaces as the code they
comment?

 Is the commenting style easy to maintain?

3.5 ROUTINES

 Are the arguments to each routine formatted so that each argument is easy to
read, modify, and comment?

 In C, are new-style routine declarations used? (Compiler dependant)

3.6 FILES, MODULES, AND PROGRAMS

 Does each file hold code for one and only one module?
 Are routines within a file clearly separated with blank lines?
 In Ada, avoid using the "use" clause which creates naming ambiguities.

4.0 SELF-DOCUMENTING CODE CHECKLIST

4.1 ROUTINES

 Does each routine's name describe exactly what the routine does?
 Does each routine perform one well-defined task?

 Page 12 of 31

 Have all parts of each routine that would benefit from being put into their own
routines been put into their own routines?

 Is each routine's interface obvious and clear?

4.2 DATA ORGANIZATION

 Are extra variables used for clarity when needed?
 Are references to variables close together?
 Are data structures simple so that they minimize complexity?
 Is complicated data accessed through abstract access routines (abstract data

types)?

4.3 CONTROL

 Is the nominal path through the code clear?
 Are related statements grouped together?
 Have relatively independent groups of statements been packaged into their own

routines?
 Does the normal case follow the if rather than the else?
 Are control structures simple so that they minimize complexity?
 Does each loop perform one and only one function, as a well-defined routine

would?
 Is nesting minimized?
 Have boolean expressions been simplified by using additional boolean variables,

boolean functions, and decision tables?

4.4 DESIGN

 Is the code straightforward, and does it avoid cleverness?
 Are implementation details hidden as much as possible?
 Is the program written in terms of the problem domain as much as possible

rather than in terms of computer-science or programming language structures?

Unit Header Format

Unit(including main)

/**

Module Name: The name of the unit being documented

Program: The name of the unit

 Page 13 of 31

Purpose: A detailed description explaining what the unit does and any

particular reason why a certain design was chosen.

Inputs: A list of inputs (parameters) to the unit and their purpose

Outputs: A list of outputs generated by the unit and their purpose

Date Created: The date the unit was created

Modified: List of dates and reasons the unit was modified

**/

File Header Format

File Header

/**

FILE: @(#) @(#)codestan.txt 3.4 - 08/04/2010

PURPOSE: This file consists of all functions that provide and process

 the command line interface for the Recon3 instrumentor for C/C++.

SYSTEM: Recon3

HISTORY:

VER DATE AUTHOR DESCRIPTION

1.0 08 APR 10 MTA Amin Created for T001 - Add r3 command

 line interface

==*/

**/

Field Descriptions

FILE: The name of the file and the SCCS keywords in this format.

PURPOSE: An overall description of why this file was created and what it

does.

SYSTEM: The software product that this file is a component of.

VER: This field is used to record the SCCS version number this file will

have when you check it in.

DATE: The date the file was created in the form DD MMM YY.

AUTHOR: This is the first initial and last name of the person making the

change.

DESCRIPTION: A brief explanation of why the file was created or modified.

 Page 14 of 31

Appendix B: Sample QMS Software Development Folder

Date(s) of Assessment: ______________ Project: ___________________________________

Assessor(s): _______________________ Process Assessed: ___________________________

 Y, N,

NA

F, O Comments

ASSESSMENT PREPARATION
1 Have standards been identified to

clearly define the process
assessment?

2 Were guidelines used to prepare for

the assessment?

3 Has the project submitted any
request for deviations or waivers to
the defined process?

4 Have entrance and exit criteria been

established for the assessment?

5 Were the appropriate stakeholders

identified for this SDF assessment?

6 Was the assessment process

addressed, including the method for

capturing Requests for Action (RFAs),

risks, or issues?

SOFTWARE DEVELOPMENT FOLDER (SDF) CONTENT

7 Does the SDF list or reference all

software requirements that are

mapped to the software element?

 Page 15 of 31

8 Does the SDF include:

8a All applicable Requirements

Documents?

8b An updated Requirements Matrix?

8c Functional specification(s)?

8d Interface definitions?

8e Data structure definitions?

9 Are all action items (RFAs/RIDs)

resulting from a milestone review

(e.g., SRR, PDR, and CDR) that affect

this software element or its

requirements maintained in the SDF?

10 Was the documentation reflecting the

(RFAs/RIDs) action item’s resolution

provided in the SDF?

11 Was the applicable milestone review

package identified in the SDF?

12 Was the design inspection/peer

review package(s) for this software

element inserted (or referenced) in

the SDF?

13 Were the resulting (design/peer

review) action items and

documentation of their resolution

included in the SDF?

14 Are there code inspection/peer

review package(s) for each software

element?

 Page 16 of 31

15 Were the resulting (code

inspection/peer review) action items

and documentation of their

resolution included in the SDF?

16 Were the following items located in

the SDF:

16a Current listing(s) for the each

software element?

16b PDL (Program Design Language as

applicable)?

16c S/W Change History?

16d Compiled Source Code?

17 Are specific tools identified that are

required to maintain each software

element: (e.g., one-of-a-kind

compilers or commercial/government

developed tools necessary to

recompile, update, or execute the

software)?

18 Are the following items located or

referenced in the SDF :

18a Unit test plans/procedures?

18b Test data and source code for any test

drivers?

18c Summary of unit test results?

18d Discrepancy reports or change

requests that necessitate

modification of the software

element?

 Page 17 of 31

18e Documentation of each

discrepancy/change’s resolution?

19 Was the date noted when the SDF

was delivered to CM or otherwise

archived (if applicable)?

POST REVIEW ACTIVITIES
20 At the conclusion of the assessment is

an understanding reached on the

validity and degree of completeness

of the Development Folders?

21 Did all designated parties concur in

the acceptability of the Development

Folders?

22 Are there any risks, issues, or request

for actions (RFAs) that require follow-

up?

23 Is there a process in place for

reviewing and tracking the closure of

risks, issues, or RFAs?

24 Were Lessons Learned addressed and

captured?

REFERENCE ITEMS/DOCUMENTS

580-CK-017-01, ISD Software Development Folder Checklist

 Page 18 of 31

Date(s) of Assessment: ________________ Project: ________________________________

Assessor(s): _________________________ Process Assessed: ________________________

COMMENTS PAGE _____ of _____

Comments from assessment

 Page 19 of 31

Appendix C : Sample QMS Software Unit Test

Date(s) of Assessment: _______ Project: ________________________________

Assessor(s): _______________ Process Assessed: __ ______________________

 Y, N,

NA

F, O Comments

PROCESS ASSESSMENT PREPARATION

1 Do standards and guidelines exist that
clearly define the process?

2 Has the project submitted any request for
deviations or waivers to current standards
or guidelines?

4 Have entrance and exit criteria been
established for the process assessment?

5 Are processes documented and under
configuration control?

6 Was documentation required for the
implementation of this process made
available to the participants with ample
time to review and prepare?

7 Is there evidence that all

stakeholders/participants were involved in

the implementation of the process?

 Page 20 of 31

 Y, N,

NA

F, O Comments

8 Have all parties involved in the

implementation of the assessed process

received training on the process?

9 Were there any constraints/limitations

associated with the implementation of the

process identified?

UNIT TEST CRITERIA\COMPLIANCE

10 Were the objectives of the unit test

established:

10a The strategies to be employed

10b The coverage requirements,

10c Reporting and analysis,

10d Close-out of anomalies?

11 Has the unit test been designed to be

a test that executes all of the code in

the unit?

Tip: Is there evidence that the unit

test executed every statement in the

unit, including all branches of

conditional statements?

12 Does the unit test satisfy the

requirement for full path coverage

and boundary value testing?

 Page 21 of 31

 Y, N,

NA

F, O Comments

13 Is there sufficient documentation on

the unit test to make it clear what is

being tested and the general test

approach?

14 Has it been confirmed that anomalies

during unit test are software

anomalies, and not problems

detected for other reasons?

15 Have comments in the source code

been paired with comments in the

unit test code to verify that all

conditional branches have been

tested and paths have been covered?

16 Was each conditional branch in the unit
executed?

17 Were all operations that might cause
erroneous execution (i.e., divide by zero,
taking square root of negative number,
etc.) proved impossible?

18 Were all parameters and inputs to
subprograms tested with nominal values
and with values at the extremes by the
algorithm, compiler, and CPU?

19 Were changes to the module source code

required to run unit test?

20 Is there documentation regarding the test

environment the unit was tested on?

21 Is the unit test repeatable, and will

identical results be produced?

22 Can the unit test be run automatically

without user interaction?

 Page 22 of 31

 Y, N,

NA

F, O Comments

23 Have the data files used by the unit

test been treated as source code for

the purpose of Configuration

Management?

24 Do distinct elements of input vectors and
matrices have distinct values for the
purpose of catching indexing errors?

25 Do inputs have distinct values?

(If input’s order to an operation matter,
the input’s should have distinct values to
catch order errors.)

POST ASSESSMENT ACTIVITIES

26 Are unit tests and test results stored in
the software development folders or
other artifact files?

27 At the conclusion of the assessment,

is an understanding reached between

development, test, system

engineering, QA, & CM on the validity

and degree of completeness of the

Unit Test process?

28 Did all designated parties concur in

the acceptability of the Unit Test

process (i.e., was there a legitimate

reason to deviate from the process)?

29 Have all artifacts been placed under

formal configuration control (e.g.,

unit test results, unit test logs)?

30 Were Lessons Learned addressed and

captured?

REFERENCE ITEMS/DOCUMENTS

FSW Unit Test Standard, Flight Software Branch-Code 582, Version 1.03 – 09-25-03, 582-2000-002

 Page 23 of 31

 Y, N,

NA

F, O Comments

National Institute of Standards and Technology (NIST) Special Publication 500-223, A Framework

for the Development and Assurance of High Integrity Software, dtd12/94

Mil-Std-498 DID

NPR 7150.2, NASA Software Engineering Requirements (SWE-062)

 Page 24 of 31

Date(s) of Assessment: ________________ Project: ________________________________

Assessor(s): ______________________ Process Assessed: __________________________

COMMENTS PAGE _____ of _____

Comments from assessment

 Page 25 of 31

 Page 26 of 31

Appendix D: Sample QMS Configuration Management

Date(s) of Assessment: ______________ Project: ____________________________________

Assessor(s): _______________________ Process Assessed: ____________________________

__

 Y, N,

NA

F, O Comments

ASSESSMENT PREPARATION

1
Have standards been identified to clearly
define the process being assessed?

2
Were guidelines used to prepare for the
assessment?

3
Has the project submitted any request for
deviations or waivers to the defined
process?

4
Have entrance and exit criteria been
established for the assessment?

5
Were the appropriate stakeholders
involved in the implementation of this
process?

CONFIGURATION MANAGEMENT INFRASTRUCTURE

6
Has the project identified those persons or
groups with authority to approve baselines
and authorize changes?

7 Has a CM Plan been established?

8
Have CM Procedures been developed to
implement the plan?

9
Has a CCB been established to approve all
formal baselines and modifications that
affect configured software products?

10

Has a centralized software library been
established for retention and controlled
retrieval of software support
documentation and change control
records?

11
Have CM tools been identified to manage
the project’s software work products?

 Page 27 of 31

 Y, N,

NA

F, O Comments

12
Have CM training requirements been
identified?

13
Is there evidence of higher level
management review of the CM process?

14

Has the project obtained commitment
from the stakeholders responsible for
performing and supporting the CMP’s
execution?

CONFIGURATION IDENTIFICATION

15
Has the project identified all configuration
items (CI) and related work products to be
placed under configuration control?

16

Does the CM process identify product
baselines for major stages in the project’s
life cycle (e.g., requirements baseline,
design baseline, build/release baselines,
acceptance baselines)?

17
Does the CM process assign unique
identifiers (i.e., naming and labeling
conventions) to configuration items?

18
Does the CM process specify when each
configuration item is placed under
configuration management?

19
Does the CM process identify each
configuration item owner?

CONFIGURATION CONTROL AND BASELINE MANAGEMENT

20

Is there evidence that the CM Process
establishes and maintains a configuration
management and change management
system for controlling software work
products? If so, is the CM & change
management system(s) capable of the
following:

20a
Managing multiple control levels of CM?

20b
Storing and retrieving configuration items?

20c
Storing and recovering archived versions
of configuration items?

20d
Maintaining the accuracy and integrity of
the configuration items?

 Page 28 of 31

 Y, N,

NA

F, O Comments

20e
Accepting change requests from all project
members?

21
Is there evidence that the CM system has
created or released a baseline for internal
use and/or delivery to the customer?

22
Is there evidence of CCB authorization
for creating, modifying, or releasing a
baseline?

23
Is there evidence that the impact of
changes and proposed fixes are analyzed
and recorded?

24
Are backups made to ensure retrieval of
previous baselines or work products?

25
Is there off-line storage of master copies
of software media, software documents,
etc.?

26

Does the Software Library provide
controlled access and distribution of
software configuration items and work
products to authorized persons only?

CONFIGURATION STATUS ACCOUNTING

27
Does the CM system maintain records of
the status and contents of the software
throughout the project’s life cycle?

28

Does the CM system record and monitor
all change requests (and the reasons for
change) to controlled software products to
assure that the configuration of all
identified items is known at all times?

29
Does the CM system track the status of
change requests to closure?

30
Does the CM system report the status of
approved configuration items and the
status of approved changes?

31
Can the CM system report the latest
version of the baselines?

32
Are CM records readily available to
affected groups and/or individuals?

CONFIGURATION AUDITS

33
Is there evidence that configuration audits
have been performed?

 Page 29 of 31

 Y, N,

NA

F, O Comments

34
Do these CM audits confirm that the
configuration records correctly identify the
configuration items in the baseline?

35
Do the CM audits confirm the
completeness and correctness of items in
the CM system?

36
Do the CM audits confirm compliance with
applicable CM standards & procedures?

37
Are CM audit reports/ records available?

38
Is there evidence that action items from
CM audits have been tracked to closure?

MEASUREMENT

39

Is there evidence of measures,
measurement results, and improvement
information derived from planning and
performing the CM process to support the
future use and improvement of the
organization's processes and process
assets?

POST REVIEW ACTIVITIES

40

At the conclusion of the assessment, is an
understanding reached on the validity and
degree of completeness of the CM
Process?

41
Did all designated parties concur in the
acceptability of the CM Process?

42
Are there any risks, issues, or request for
actions (RFAs) that require follow-up?

43
Is there a process in place for reviewing
and tracking the closure of risks, issues, or
RFAs?

44
Were Lessons Learned addressed and
captured?

REFERENCE ITEMS/DOCUMENTS

CMMI Version 1.1, Guidelines for Process and Integration and Product Improvement

NPR 7120.5B, NASA Program and Project Management Processes and Requirements

ISD Software Configuration Management Process, 580-PC-019-01

 Page 30 of 31

Date(s) of Assessment: ________________ Project:

Assessor(s): _________________________ Process Assessed:

__

COMMENTS PAGE _____ of _____

Comments from assessment

 Page 31 of 31

