
InfoMax: An Information Maximizing Transport
Layer Protocol for Named Data Networks
Jongdeog Lee, Akash Kapoor, Md Tanvir Al Amin,
Zeyuan Zhang, Radhika Goyal, Tarek Abdelzaher

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801
{jlee700, akapoor5, maamin2, zzhan116, rgoyal3, zaher}@illinois.edu

Zhehao Wang
REMAP

University of California at Los Angeles
Los Angeles, California 90095

zwang@tft.ucla.edu

Abstract—The advent of social networks, mobile sensing, and
the Internet of Things herald an age of data overload, where the
amount of data generated and stored by various data services
exceeds application consumption needs. In such an age, an in-
creasingly important need of data clients will be one of data sub-
sampling. This need calls for novel data dissemination protocols
that allow clients to request from the network a representative
sampling of data that matches a query. In this paper, we present
the design of a new transport-layer dissemination protocol,
called InfoMax, that allows applications to request such a data
sampling. InfoMax exploits the recently proposed named-data-
networking (NDN) stack that makes networks aware of hierar-
chical data names, as opposed to IP addresses. Assuming that
named objects with longer prefixes are semantically more similar,
InfoMax has the property of minimizing semantic redundancy
among delivered data items, hence offering the best coverage of
the requested topic with the fewest bytes. The paper discusses
the design of InfoMax, its experimental evaluation, and example
applications.

I. INTRODUCTION

This paper1 develops a new transport-layer communication
abstraction and underlying data dissemination protocol that
allow a consumer to request a sampling of a producer’s data
at a configurable granularity. The protocol is implemented on
top of a named-data-networking (NDN) stack. It represents an
example of a new transport paradigm centered around lossy
information transfer that aims to substantially reduce trans-
mitted data volume, while meeting application summarization
needs.

The work is motivated by the proliferation of sensors that
are connected to the Internet, and the advent of social networks
that democratize information broadcast, propelling us into a
world of data overload at an accelerating rate. Indeed, over
90% of the world data was produced within the last decade [1].
As the amount of digital data grows exponentially, a gap
arises between the over-abundant supply and actual application
demand. The growing disparity between the amounts of data
generated and what suffices to meet application needs suggests
that an increasingly important function in the future will be
one of data sub-sampling (as a means of summarizing large

1Work on this paper was supported in part by NSF grant CNS 13-45266
and CNS 10-40380.

data).2 Different data uses might have different sub-sampling
needs for the same data set. The current Internet architecture
places the sub-sampling burden on the information client. The
paper shows that information centric networks significantly
change the equation by facilitating the development of generic
lossy transport, that has the effect of sub-sampling data in
a manner that achieves minimum information loss, while
reducing information volume in a client-controlled fashion.
We expect that this protocol will be of increasing importance
to a growing range of data-centric applications.

Our protocol is implemented on top of the named data
networking (NDN) protocol stack [2]. NDN, an instance of
information-centric networking, is a network layer that assigns
hierarchical names to data objects instead of hosts. This
architectural decision has two important implications from the
perspective of InfoMax design. First, the network and transport
layers are aware of application-level object boundaries. This
is because objects have explicit names that the network is
aware of. Second, since a hierarchical naming scheme is used,
inferences can be made about semantic overlap between named
objects based on the distance between the corresponding
names in the name tree. These two insights allow us to
develop an information-loss-minimizing protocol for data sub-
sampling.

Unlike the IP paradigm, which is push-based (where a
sender decides what a receiver gets), InfoMax lies atop of
NDN, which is pull-based. The receiver pulls data from the
network by name. (Note that, in NDN, since data are named,
it does not matter who the sender is.) Hence, InfoMax offers
a primitive for requesting a data set specified by a name
prefix. The prefix names the root of a content tree with the
understanding that a sampling of the content tree is to be
transmitted to the requesting node. The requesting node does
not need to know what content is stored in the tree and does not
know the tree name space. It just wants the data under the tree

2In this paper, we use the word “sampling” or “sub-sampling” in the
conventional general sense of selecting representative examples of objects
from a larger set of similar objects. For instance, in a tourism application
one might want to select examples of good and bad reviews of some hotel.
In a building management application, one might want to select examples of
afternoon temperature readings in a building.



at a configurable level of summarization (i.e., sub-sampling).
Since it is the receiver of the data that controls the amount
of information transfer, the receiver can pull less content or
more content, until the receiver’s content needs are satisfied.
Hence, besides specifying the name prefix that decides the
data set, the receiver controls the degree of summarization by
specifying how much information is actually pulled from the
named tree.

The novelty of InfoMax lies in the order that objects
belonging to this tree are transferred. InfoMax assumes that
objects that share a longer prefix within the tree have more
semantic overlap. Hence, the marginal utility of sending an
object that shares a longer prefix with a previously transmitted
one is less than the marginal utility of sending an object that
shares a shorter prefix. This leads to a shortest shared prefix
first transmission order for objects in the requested tree. This
order is shown to maximize the marginal utility of transmitted
objects and hence the total accumulated utility for a given
transmitted data volume. Said differently, a transmission can
be stopped at any time, short of transmitting the whole tree,
while ensuring the property that the information loss resulting
from early termination is minimized over all possible object
transmission orders. Since, in a pull-based architecture, it is
the receiver that controls when transmission stops, the receiver
gets to decide when they’ve had data at a fine-enough granu-
larity. The idea is reminiscent of receiver-driven multicast [3],
implemented in an application-independent fashion.

InfoMax extends a previous transport layer abstraction,
called the Information Funnel [4], proposed earlier by the
authors. While the latter was geared for data collection by a
single consumer from multiple producers, InfoMax is geared
for the complementary case of data dissemination, where
multiple consumers pull data from the same producer, possibly
at different levels of summarization. Together, the Information
Funnel and the InfoMax dissemination protocol may constitute
the two building blocks of many data-intensive services. The
funnel will collect data into repositories from multiple sources,
whereas InfoMax will serve it to multiple eventual consumers
at different degrees of detail. We also significantly simplify the
data ordering algorithm, compared to the algorithm used by the
Information Funnel, while ensuring that it maximally benefits
from network caching within the NDN Layer. The protocol
was implemented and tested on the NDN testbed. At the
time of writing, the testbed includes more than 15 institutions,
spanning three continents (although our tests were performed
in the continental US). Two applications are illustrated; one
from the domain of tourism and the other from the domain of
social network search. Results demonstrate the advantages of
using InfoMax in terms of achieving a configurable receiver-
decided trade off between data volume received and degree of
detail. We also show that the scheme offers a relatively low
overhead and that it leverages native NDN in-network caching.

The rest of the paper is organized as follows. The design and
implementation of the new protocol are described in Section II.
Section III describes the experimental setup and explains
the evaluation results on a nation-wide testbed. Section IV

describes two prospective application examples. We discuss
related work in Section V and conclude this paper with a
summary and discussion of future work in Section VI.

II. DESIGN AND IMPLEMENTATION

In this section, we discuss the InfoMax abstraction, design
decisions, and implementation on top of the named-data-
networking stack.

A. The InfoMax Information Summarization Abstraction

The InfoMax protocol is designed to sample data of ap-
plications that store and serve significant amounts of largely
homogeneous, and partially redundant data. An example ap-
plication class that fits this category is social networks. For
instance, Twitter serves data (collected from a large popula-
tion) as JSON objects; each object is a tweet together with its
metadata. Similarly, Instagram and Flickr serve images; each
image includes a picture file and EXIF metadata. These data
sets are large and syntactically homogeneous, but amenable to
hierarchical clustering based on semantic content. For exam-
ple, recent work suggested a hierarchical clustering framework
for tweets [5], that significantly speeds up indexing to retrieve
tweets that match arbitrary keywords. The hierarchy arises
because some tweets are more similar than others, as can
be measured by various text similarity metrics. At the top
of the hierarchy are tweet clusters that have no text overlap.
Subsequent levels introduce tweets with progressively more
overlap with their siblings. If a name space echoed the above
hierarchy, tweets whose names have a longer shared prefix
would be more similar.

Cyber-physical systems offer another application class that
gives rise to syntactically homogeneous data objects that
semantically fall into hierarchical structures. For example,
a campus building management system might collect data
on temperature in different campus spaces. Such data may
be organized hierarchically by building, floor, room, and
temperature sensor [6]. Clearly, data from sensors in the same
room would be more similar than data from different floors or
buildings. If the data were named hierarchically as described
above, items that share a longer name prefix would generally
be more correlated (being from the same or close physical
spaces). With the rise of projects such as the Internet of
Things, and the increased ubiquity of sensory instrumentation,
the amount of generated sensor data is going to increase
making cyber-physical data sets more widely available on
networks.

The InfoMax protocol is designed as a general protocol
for requesting a sampling of such data sets that summarizes
them at a receiver-driven degree of granularity. Name space
design is clearly a key consideration when using InfoMax, in
that it determines the output of summarization. The examples
above illustrate that the name space in important categories
applications lends itself naturally to a hierarchical organization
that is suitable for InfoMax. The main API calls provided by
the InfoMax producer and consumer, along with their uses,
are summarized in Table I and Table II, respectively.



TABLE I: InfoMax Producer APIs

InfoMaxProducer (Name prefix): Constructor for the Info-
Max producer object, producer. It is called by an application to
initialize the producer and specify a name prefix associated with this
producer. The prefix specifies a content name space that the producer
should make available on the network.

add (Name postfix, Data data): A method of the producer,
producer->add to add data objects to its tree. The call specifies the
data object that needs to be added along with its position in the tree.

delete (Name postfix): A method of the producer,
producer->delete to delete the specified tree branch.

TABLE II: InfoMax Consumer APIs

InfoMaxConsumer (Name prefix): Similar to the InfoMax-
Producer, this is a constructor for the InfoMax consumer object,
consumer. A prefix is specified that the consumer is interested in.
It creates the receiving end for all content that matches this prefix.

get (): This method, consumer->get, waits to receive the object
from the network that match the prefix requested by the consumer (or
timeout). The method may be called multiple times to receive the set of
matching objects. The InfoMax protocol continues to retrieve objects
until the application stops calling this method. The application at the
receiver can continue to retrieve objects until the desired level of detail
is met.

B. A Note on Optimality

The InfoMax protocol was designed to (i) minimize over-
head, (ii) make the best use of the underlying NDN stack, and
(iii) offer a general sub-sampling function that is application-
independent. By sub-sampling, we do not mean returning an
arbitrary subset of requested objects. What is the interesting
about InfoMax is that it retrieves the subset that minimizes
information loss (compared to receiving the entire set), given
the fraction of retrieved objects.

Definition 1. The name space assumption: The fundamental
assumption that InfoMax makes regarding an application’s
name space, is that data objects have hierarchical names that
respect the following property: The longer the shared name
prefix between two objects, measured in the number of shared
name segments (i.e., tree levels), the lower the marginal utility
of receiving the second object.

In accordance with the above assumption, objects are retrieved
in a shortest-shared-prefix-first manner. Below, we offer a
proof sketch of why this retrieval policy minimizes informa-
tion (utility) loss.

Theorem: Shortest-shared-prefix-first retrieval order mini-
mizes receiver’s information utility loss.

Proof Sketch: Let us define information utility of an object
at a receiver as a measure of value that the receiver gets from
receiving the object. Consider a name prefix, advertised by a
producer, that names a tree, T , containing a total of N data
objects. Each object, Di ∈ T has an information utility, Ui,
when received. Given the name space assumption mentioned

above, Ui is a function of the length of the shared prefix
between Di and previously received objects. Let us denote
the length of the largest such shared prefix by Si. Hence,
Ui = f(Si), where f is a non-increasing function. Shortest-
shared-prefix-first implies that the sent object will minimize
Si over the remaining (unsent) object set, R ⊂ T . Hence, it
will maximize f(Si). Since f(Si) is maximized for each sent
object, it is possible to prove by induction over the number of
received objects, K, that the sum f(Si) over the K objects
received in InfoMax order is maximum among all possible
sums of K objects. Hence, the utility sum over the remaining
(unsent) object set, R, is minimum, which is defined as the
information utility loss should transfer stop after K objects.
Hence, InfoMax minimizes information loss for any K.

Two observations should be made here. First, the above
proof hinges on the assumptions that (i) Ui is only a function
of Si, denoted Ui = f(Si) in the proof, and (ii) the function f
is non-increasing. The optimality result does not hold for more
general utility functions. For example, it does not hold when
marginal utilities are a function of the identities of received
objects. Second, it is notoriously hard to figure out utility
values in practice. Hence, it may be counter-productive to
consider more nuanced utility models. Instead, we follow the
Occam’s Razor principle. Accordingly, the above proof sketch
develops intuitions regarding optimality in the simplest case
that is consistent with the name space assumption (labeled
Definition 1, above).

C. The InfoMax Protocol

The InfoMax protocol [7], [8] is implemented on top of
NDN. NDN offers an API to request single data objects by
name. This API is called an NDN interest. A consumer can
send an NDN interest to retrieve a named object from the
network. NDN will route that interest to the nearest node
(router or host) that has a matching object. The object is then
returned following the reverse route. Routers on the reverse
path cache objects that they see. InfoMax uses this mechanism
to retrieve a content tree by repeatedly using NDN interests
to retrieve the individual objects. The key contribution of
InfoMax is its implementation of the shortest-shared-prefix-
first retrieval order for objects in the requested tree. In this
paper, we assume that content has a single producer. However,
this content can be cached at multiple places in the network.

1) Enforcing the InfoMax Order: The first design question
is: who should maintain the InfoMax shortest-shared-prefix-
first order? When requesting a content tree that matches a
prefix, the InfoMax consumer does not know what content
exists in the tree. Hence, the consumer cannot request objects
in the tree in the correct order. It is therefore the producer’s
responsibility to compute a retrieval order for the tree.

Native NDN allows consumers to send interests in partially
specified name prefixes (e.g., the root of the desired content
tree) with an exclusion filter that specifies objects (matching
the prefix) that the consumer already received. Unfortunately,
this approach does not specify which object to retrieve next
from the tree.



A trivial design would have the producer keep track of how
many objects were delivered so far to each consumer. When
the next request arrives from a consumer, the next object
matching that consumer’s interest would be delivered. The
design would require producers to keep per-client state, which
undesirable. Furthermore, any design that requires recipients
of consumers’ NDN interests to know the next object to
send in InfoMax order (e.g., based on previously received
objects) would not work in the presence of network caching.
Caches (unless they run InfoMax code as well) will not
know the correct InfoMax order and hence may not serve the
correct next object. To keep caches from having to implement
InfoMax, consumers should always ask for the full object
name, as opposed to a partially specified name prefix.

The requirement that producers maintain the shortest-
shared-prefix-first list for their content (since they know their
content best), together with the requirement that consumers ask
for objects by their exact full name lead to a simple design
where:

• At the producer: The transport entity sorts objects in the
tree (under the exported name prefix) in a shortest-shared-
prefix-first delivery order. This sorted order is recorded,
broken into smaller objects, called lists. These lists are
numbered and made available by the transport entity to
be retrieved sequentially by consumers.

• At the consumer: Given a tree prefix, say root, to
retrieve objects from, the transport entity requests the
aforementioned numbered lists using default names, such
as root/list/1, root/list/2, etc. (In our implementation,
the default list names contain special characters not used
in naming data objects, in order not to clash with data
object names.) Once a list is retrieved, the transport entity
at the consumer parses it for data object names, and
requests the listed objects by exact name in the order
they appear on the list.

The approach allows for both list objects and data objects to
be cached. The cache need not run InfoMax code. It simply
responds to interests in named list and data objects, either
serving them or forwarding the interest further towards a
producer.

The size of the lists turns out to be an important design
parameter that can significantly impact communication per-
formance. A small list size could lead to frequent exchange
of lists in order to determine which data objects to retrieve
next, thus leading to more network traffic. A large list size can
increase overhead if the consumer does not need that many
data objects in their tree summary. Since the network-layer
packet in NDN is 8KB long, we fixed our list size to 100 object
names, which is roughly 8KB in size. Hence, list objects take
one full NDN packet. This is suitable for transfer of large
numbers of data objects, which is the common case in the
data intensive applications that motivate InfoMax. Whenever
the consumer needs more data objects, it can ask for the next
list and will get names of the next 100 objects.

Another important parameter to consider is the interest
pipelining window size. That is to say, how many objects

from a list should the consumer’s transport entity request in
parallel? This parameter is exported by the NDN layer. Its
effect is empirically determined in the evaluation section.

2) Handling Dynamic Updates: The approach mentioned
above is suitable for retrieving primarily static content. If the
tree at the producer is updated often, two problems occur. First,
extra overhead is paid in recomputing the lists that maintain
the sorted order of objects in the tree. Second, if the lists are
updated while some consumers are retrieving content, retrieval
of inconsistent list versions may result in an incorrect data
object retrieval order.

To reduce the overhead of recomputing the lists (as well
as the number of list versions generated and hence potential
cache pollution with these versions), the protocol controls the
frequency at which the lists are recomputed. For example,
the transport entity at the producer may recompute lists
when a new object is added or 10 minutes after the last re-
computation, whichever is longer. This imposes a minimum
list update period and hence bounds overhead.

To prevent inconsistent list versions from jeopardizing deliv-
ery order to a consumer, a limited number of past versions may
be maintained at the producer’s transport entity. The transport
entity at the consumer notes the version number of the first
list it receives, root/list/1 and, in the rest of the data transfer,
requests lists of the same version number.

Having said the above, we should note that InfoMax en-
visions data that does not change often. For example, once
sensor data objects are collected, they are stored for a long
period of time without modification. Similarly, once users
issue tweets or images, they live in the blogosphere without
modification until obsolete. The most common case of updates
is to add new objects or new branches to the tree. We
recommend that, in applications featuring frequent updates, the
first branch under the consumer’s prefix, root should refer to
a time window. Hence, each window, a new tree is constructed
from objects in that window. That tree then remains fixed for
the rest of time, once a new window starts. A consumer can
request specifically the window(s) that they need under root.

Note that, name space design, is in general an important
application-level issue for applications that serve data over
information-centric networks. Application designers must con-
sider other design implications as well, such as security and
ease of routing. Those implications may be orthogonal to
the naming hint suggested above, as they tend to affect the
composition of the prefix root itself, more so than the topology
of the descending tree under it.

Fig. 1 depicts an example flow of the InfoMax protocol. In
step 1, an application offers a new name space by creating
an InfoMax producer. In step 2, a consumer is created who
would like to receive a sampling of this content. In step 3,
the consumer’s transport entity sends an NDN interest in the
first list object (called a “diversity interest” in the figure). The
interest is routed by NDN to whoever has this list. Unless
the content is already cached somewhere, the NDN interest
packet makes it to the producer. On receiving this packet
at the producer, the NDN layer invokes a callback to the



Producer	
  Consumer	
  

(3)	
  Send	
  “DiversityInterest	
  packets”	
  

(4)	
  Receive	
  diversified
	
  data	
  names	
  

(1)	
  	
  	
  Create	
  &	
  
	
  	
  	
  	
  	
  	
  	
  Adver5se	
  contents	
  

(5)	
  Send	
  interest	
  packets	
  for	
  “diverse	
  data”	
  

(6)	
  Receive	
  data
	
  packets	
  for	
  “div

erse	
  data”	
  

(2)	
  Request	
  contents	
  

Repeat	
  (3)~(6)	
  unAl	
  	
  
the	
  consumer	
  gets	
  

enough	
  data	
  

Fig. 1: Communication flow of InfoMax

InfoMax transport entity. The entity sends back the first list
with the names of data objects that the consumer should ask
for (step 4). On receiving this list, the consumer requests the
data objects (step 5). These requests are fulfilled by whoever
has the content. In the figure, the content is fulfilled again
by the producer (step 6). The consumer may request more
content, repeating steps 3-6 until satisfied or until all content
under the tree is collected.

D. An Approximate Transmission Ordering Algorithm

An efficient implementation of the shortest-shared-prefix-
first delivery algorithm is needed to reduce InfoMax overhead.
In prior work, the authors proposed an optimal algorithm
for diversifying data objects based on name similarity [4].
However, this algorithm is relatively slow. Instead, we
developed a simplified algorithm that works as shown below.

simplePrioritizer(Node root, Node[] list)
while unvisited leaf nodes in tree do

list.insert(getNextNode(root));
end

Node getNextNode(Node currentNode)
currentNode.count += 1;
if currentNode == leafNode then

return currentNode;
end
for child = currentNode.children do

if child has the smallest count among siblings with
unvisited leaf nodes then

getNextNode(child);
end

end
Algorithm 1: Approximate least-shared-prefix algorithm

The algorithm starts with all branch counts initialized to
zero, then traverses the tree from the root node taking, at each
level of the tree, the least visited branch and incrementing

UCLA router UIUC router

Other NDN routers

InfoMax

Producer

Base

Consumer

InfoMax

Consumer

Fig. 2: Topology for measuring end-to-end delay

its count. If there is a tie, the leftmost branch (of those
involved in the tie) is taken. Once a leaf node is reached,
the object at the leaf is returned and its name appended to
the output list. The traversal starts again from the root for
each subsequent object. The algorithm terminates when all
leaves have been visited. The list generated in this process
approximates shortest-shared-prefix-first. This is because an
object that has the shortest shared prefix with previously listed
ones must descend from some branch, B, not yet traversed,
whose sibling have been traversed already. The count of that
branch would therefore be zero. When the algorithm reaches
the parent node at branch, B, say, node P , it will take branch
B because it has the smallest count (specifically, its count is
zero). Hence, the algorithm will correctly choose the branch
leading to a shortest-shared-prefix object. The problem here
is that the greedy nature of the algorithm might cause it to
take a different branch earlier on, hence never reaching node
P . This occurs when there is a tie in the counts somewhere
closer to the root of the tree, causing the algorithm to descend
into a different subtree (i.e., away from P ). We investigate the
efficacy of this algorithm in the evaluation section.

III. EVALUATION

In this section, we evaluate InfoMax performance. This
includes evaluating the overhead, investigating the impact
of network caching, and assessing the degree to which the
algorithm approaches the optimal shortest-shared-prefix-first
transmission order. The experiments were done on a nation-
wide testbed implementing the NDN protocol. There are 17
institutions participating in the NDN testbed in the world. The
testbed map can be found in the NDN site [9]. These nodes
are created for research purposes. Hosts can be connected to
NDN routers by configuring and executing an NDN forward-
ing Daemon [10]. We used the above testbed for following
experiments.

A. Transmission overhead

In order to measure end-to-end delay between a producer
and a consumer, we created a producer in California (connect-
ing to the UCLA NDN router) and a consumer in the Midwest
(connecting the UIUC NDN router) as shown in Fig. 2.

To evaluate the extra overhead of InfoMax, we then created
an additional consumer (also at UIUC) that is “clairvoyant”
in that it knows exactly the topology of the producer’s data



��

�����

����

�����

����

�����

�� �� ��� ��� ��� ��� ���

��
��
��
��
���
��
��
��
��
��

�����������

�������
����

Fig. 3: Amortized per-object latency for differ-
ent window sizes

��

�����

����

�����

����

���� ���� ���� ���� �����

��
��
��
��
���
��
��
��
��
��

����������������������

�������
����

Fig. 4: Amortized per-object end-to-end delay
as a function of the number of objects

tree. This consumer therefore simply requests data objects one
a time by name via NDN, bypassing the InfoMax transport.
This clairvoyant consumer is thus expected to show the best
achievable performance in terms of latency and throughput.

Before comparing end-to-end latency of data retrieval in the
two cases, we perform an experiment to decide the proper
NDN pipelining window size. As mentioned in the design
section, the window size in NDN is the number of interest
packets that clients can send concurrently before receiving data
packets matching these interests.

Fig. 3 shows end-to-end communication latency between a
producer and a consumer for different window sizes. Both, In-
foMax and the Base (clairvoyant) consumer, request 100 data
objects from the InfoMax producer. The InfoMax consumer
must of course also fetch the list object with data names. In the
figure, the X-axis represents the consumer’s window size and
the Y-axis represents latency per data object. Note that, end-
to-end latency decreases with increasing window size. This
trend is opposed by packet drops (not shown) that increase. We
set window size to 10 in the remaining experiments, offering
reasonable latency and very rare packet drops.

With window size fixed as determined above, we perform
the same experiment while varying the number of requested
data objects. In Fig. 4, the X-axis denotes the number of
data objects requested and the Y-axis denotes latency per one
object. Considering that InfoMax exchanges additional packets
and parses the list packets for data object names, we expect the

UCLA router Other NDN routers

InfoMax

Producer

Base

Consumer

InfoMax

Consumer

Base

Consumer

Base

Consumer

Fig. 5: Topology for testing NDN caching with
multiple consumers

base (clairvoyant) client to outperform InfoMax. However, the
added latency is not significant. Moreover, this extra latency
could mitigated by successful NDN caching as will be shown
in the following experiment.

B. Scaling delivery

A key benefit of NDN is in-network caching. InfoMax
is carefully designed to leverage the NDN router cache. To
demonstrate, we measure transmission rate at the producer
side while increasing the number of InfoMax consumers. If
NDN caching works well, the load on the consumer should not
change. It should remain the same as with only one consumer.
Fig. 5 shows the network topology used for this experiment. As
before, the InfoMax producer is in California (connected to the
UCLA NDN router). Four consumers are logically connected
to different NDN routers across the testbed (University of
Memphis, University of Michigan, Colorado State University,
and UIUC).

Each consumer is programmed to request 100 data objects,
repeatedly. We compare what happens when cache is enabled
and disabled, respectively. The resulting transmission rate of
the producer is shown in Fig. 6. In the figure, the X-axis and
the Y-axis represent the number of consumers and the total
transmission rate at the producer, respectively. Dotted lines in
Fig. 6 show the producer’s transmission rate in the presence
of caching. Note that, it remains almost same as the number
of consumers increases. This is because of successful NDN
caching. Next, we disabled the cache function by setting cache
time-to-live to be very short. As can be seen from the solid
lines in Fig. 6, the resulting transmission rate of the producer
increases almost linearly with the number of consumers in
this case. The same trends are observed for both InfoMax and
the base client. The experiments show that InfoMax does not
increase the producer’s transmission bandwidth needs.

C. Shortest-shared-prefix-first Ordering

InfoMax provides an approximate implementation of the
shortest-shared-prefix-first order that approaches optimal be-
havior with low overhead. In order to show it, we first
devise an experiment to measure how close InfoMax comes to
an optimal shortest-shared-prefix-first algorithm. The optimal
algorithm was described in the author’s prior work and is used
as the comparison point [4]. For this experiment, a random



��

����

����

����

����

�����

�����

�� �� �� ��

�
��
�

�������������������

��������������
���������������

�����������������
������������������

Fig. 6: Transmission rate of a producer with
multiple consumers

tree generator is developed to create a diverse set of trees by
controlling the total number of nodes, N , and the maximum
number of children, C, under one parent. Different trees are
created (with N = 1600 and C = 20), and the output
of an optimal implementation of shortest-shared-prefix-first
is compared to the approximate Infomax algorithm. Fig. 7
shows the result of this comparison, where the X-axis denotes
the number of objects transmitted, and the Y-axis denotes the
average number of shared segments (tree levels) between the
current object name and previously sent data.

As can be seen in the graph, the number of shared segments
in the name prefix increases monotonically as more objects are
transmitted, indicating that diverse objects are transmitted first
(i.e., those with a smaller prefix overlap) followed by progres-
sively more redundant objects (with a higher prefix overlap).
In application terms, the degree of redundancy increases as
more objects are sent. Note also that the InfoMax curve is
very close to the optimal, whereas the regular NDN curve
(which, for the purposes of this experiment, corresponds to a
leftmost child first traversal) is significantly higher meaning
that more redundant objects are sent earlier, thereby reducing
transmitted information value.

We perform the same experiments with two different sets
of trees created by our generator. Both sets have the same
number of nodes in a tree (N=1600), but different maximum
number of children (C=5, 100). Trees having smaller C are
deeper and those having bigger C are wider and shallower.
Fig. 8 shows that deeper trees gain more from our algorithm
in that the separation between the InfoMax and NDN curves is
larger. This is because leaf nodes in a deeper tree have longer
names, so the impact of a shortest-shared-prefix-first strategy
is more pronounced. In the limit, if the tree depth is equal to
1, there would be no difference among the algorithms.

Although InfoMax is slightly worse than optimal (presented
earlier [4]), it has a large computational advantage as can be
seen in Fig. 9. The figure shows a large advantage for the
approximate algorithm in terms of computation time.

IV. APPLICATION EXAMPLES

InfoMax, as previously discussed, relieves the consumer’s
application from having to figure out how best to sample a
producer’s abundant data. It also relieves the producer from

��

��

��

��

��

���

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
��
��
���
��
��
��
���
��
��
��
��
��
��
�

������������������

�������
�������
��������

��

��

��

��

��

��

��

��

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
��
��
���
��
��
��
���
��
��
��
��
��
��
�

������������������

�������
�������
��������

Fig. 7: Average length of shared prefix (in num-
ber of shared name segments) as a function of
objects transmitted. Raw data (up) and smoothed
data (down).

having to understand consumers’ data summarization needs.
The producer is simply responsible for naming and organizing
its data objects, such that object categories with less similarity
branch out earlier in the name space. Everything else follows
naturally, as illustrated in the examples below.

A. Visual Tourism

As a simple example, we created a tourism application.
It allows consumers to browse pictures of points of interest
at destinations of choice. The pictures are organized hierar-
chically first by destination (e.g., “Rome”, “Paris”), then by
category of points of interest (e.g., “Ancient Landmarks”, “Re-
naissance Landmarks”, “Modern Landmarks”, and “Religious
Landmarks”), then by landmarks that belong to each category,
and finally pictures of each landmark.

Suppose a consumer, a tourist, queries for ideas for a
possible itinerary in Rome. The client software issues an Info-
Max request to download pictures under the “/Tourism/Rome”
prefix. Fig. 10 shows the first 6 images retrieved. We observe
that the pictures are spread across various branches in the
content tree, including ancient, middle age, and religious
landmarks. They give a diverse view of Rome overall. The
number of pictures in the overall data set exceeds 3000, with
over 150 pictures of each single landmark. A random retrieval
of these pictures would likely yield much redundancy. Instead,



��

��

��

��

��

��

��

��

��

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
��
��
���
��
��
��
���
��
��
��
��
��
��
�

������������������

�������
�������
��������

��

��

��

��

��

��

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
��
��
���
��
��
��
���
��
��
��
��
��
��
�

������������������

�������
�������
��������

Fig. 8: Average length of shared prefix (in
number of shared name segments) as a function
of objects transmitted for deep trees (up) and
wide trees (down).

�������

������

�����

����

��

���

����

�����

������

���������������� ����� ����� �����

��
��
��
�

�����������������������������

�������
�������

Fig. 9: Computation time for each prioritization
algorithm

by following diverse top level branches first, the shortest-
shared-prefix-first algorithm automatically retrieved a diverse
set of pictures. No application semantics were needed to
achieve this diversification.

Next, the consumer wishes to take a closer look at Rome’s
ancient landmarks. The client software queries InfoMax for
“/Tourism/Rome/Ancient”. The results are shown in Fig. 11
Again, they come from different branches at this level of the

Fig. 10: Top-level query – overview of Rome

Fig. 11: Second-level query – scenes from an-
cient Rome

tree, showing different ancient landmarks. Finally, the con-
sumer wishes to see the Colosseum. The software queries In-
foMax for “Tourism/Rome/Ancient/Colosseum”. At this level
only Colosseum pictures are retrieved as shown in Fig. 12.

Two points are notable in this example. First, the retrieved
pictures, in each case, constituted a sampling of a data set that
contained orders of magnitude more matching entries to the
consumer’s specific query, most of which were partially redun-
dant. Among these matching entries, an appropriately diverse
small sampling was returned. Second, such diversification of
retrieved information occurred with no use of application-
specific information. It was simply an artifact of following
the generic shortest-shared-prefix-first retrieval order by the
InfoMax transport entity.

B. Twitter Search

Next, we describe a Twitter-based news feed application
utilizing InfoMax transport [11]. In this application, our pro-

Fig. 12: Query on the Colosseum



TABLE III: Top-level Kirkuk News Feed

S1 RT @Mojahedineng: #PMOI #Iran Iran: Three Kurdish teachers ar-
rested to prevent teachers protest gathering: http://t.co/DQnqfniFyQ

S2 RT @DerekStoffelCBC: Lets remember journalist Kenji Goto as a
brave, humane man, not an #ISIS victim. http://t.co/Ih4Teuz33e #CBC

S3 RT @MEAIndia: Beginning the day with good news. 11 Indian nurses
from Kerala, evacuated from Kirkuk, to return home from Erbil on 7
February

S4 RT @peopIeofearth: A Kurdish fighter walks with his child in the streets
of Kobani, Syria after they recaptured it from ISIS militants.

S5 RT @Alladin Al: Y didnt any news Chanel broadcast the muslims
being burned in Burma? Or are they only focused on their beloved
”ISIS”

S6 RT @grasswire: A Kurdish marksman stands atop a building as he
looks at the destroyed Syrian town of #Kobane. Photo @Kilicbil #AFP

S7 RT @salar dd: #Turkish special forces member: We have launched
attacks on #Kurdish villages; killed babies then blamed #PKK on TV

S8 RT @itirerhart: @BBCr4today: Kurdish victory in Kobane: Islamic
State militants have been driven out of the Syrian town.

S9 RT @ Kurda : #Peshmerga Destroyed Huge Islamic Jihadist Armor in
#Kirkuk by MIlan Rockets #TweitterKurds #Kobane #JordanianPilot

S10 RT @TheDarlingBeast: 1988, #Kurdish children lined up to be slaugh-
tered under Iraqi regime. Look at that innocent smile, so unaware.

ducer crawls Twitter for tweets on events that it wants to
report a Twitter-based news-feed on. These tweets have various
degrees of similarity. Some are plain retweets without new
information, some are retweets with added information, some
provide information related to an event from possibly different
perspectives, and some are entirely different. As a result,
these tweets can be hierarchically clustered by similarity as
described by a subset of the authors in prior work [5]. The
resulting hierarchical structure is used to generate a content
tree in the NDN name space. This content tree is served by
the InfoMax producer, offering news about ongoing events at
a configurable level of granularity to consumers.

Specifically, we collected tweets on recent ISIS attacks in
the Iraqi Kurdish town of Kirkuk. Around 200K tweets were
collected (from Jan 31 to Feb 11, 2015) matching the keywords
“ISIS”, “Kirkuk”, and “Kurdish” or the geographic locations
around Kirkuk, Iraq. To prioritize what may be important for
the consumer, siblings sharing a common prefix were ordered
left to right in a decreasing order of the number of their
descendants. (This takes advantage of the generic InfoMax tie
breaking rule, described earlier, that takes the leftmost branch
of those involved in a tie.)

Consider a consumer who specifies that they want a 10-
tweet summary of the aforementioned news feed. Following
the InfoMax shortest-shared-prefix-first order, the producer
serves content from ten different top-level branches of the
content tree. The resulting output is shown in Table III. (Only
English tweets are selected for readability in this example.)

After reading the result, the consumer is interested in the
details of a particular event. The client software allows it
makes a followup query to retrieve more results on a given
tweet (similar to retrieving results on the Colosseum in the
tourism example). This is implemented by having the software
ask InfoMax for the subtree of this tweet’s parent. (Note that,
the software knows the name of the parent node because it
already retrieved the tweet in question from the producer,

TABLE IV: Kirkuk: More on Kobane Attack

S8 RT @itirerhart: @BBCr4today: Kurdish victory in Kobane: Islamic
State militants have been driven out of the Syrian town.

D1 VIDEO: Awaiting return to war-torn Kobane http://t.co/3YeFlCPvvv
Days after Kurdish forces drove Islamic State militants from Kobane

D2 Kurdish forces engage in sporadic battles with Islamic State militants
around the Syrian town of Kobane, as they fight to expel IS

D3 Kurdish forces have driven Islamic State (IS) militants from Kobane,
activists say, ending a four-month battle... http://t.co/4RJVgha2jA

D4 SYRIAN Kurdish fighters have seized dozens of villages from Islamic
State jihadists around the town of Kobane. http://t.co/7oLYiwlKC2

D5 Iraqi Kurdish forces retook an oil station Saturday that had been seized
by Islamic state militants, but there... http://t.co/oM5UjkuYv8

D6 ”Earlier gains were fueled by reports of Islamic State militants striking
at Kurdish forces” talking oil prices http://t.co/GsCQU1pDol

D7 The Kurds Kurdish forces engaged in sporadic battles with Islamic State
jihadists around the Syrian town of Kobane on Saturday

D8 Islamic State moves into south-west of Syrian Kurdish town - The
Malaysian Insider (themalaysianinsider) http://t.co/3El3TuiO8m

D9 RT @indianews: After Kobani, Islamic State may target Kurdish town
of Afrin next: Western and Arab powers that ...

D10 [Xinhua News] IS militants flee surrounding of Syrian Kurdish city:
activists: The militants of the Islamic St... http://t.co/ep5ebx1ghb

TABLE V: Kirkuk: More on Kenji Goto

S2 RT @DerekStoffelCBC: Lets remember journalist Kenji Goto as a
brave, humane man, not an #ISIS victim. http://t.co/Ih4Teuz33e #CBC

D1 My condolences RT @DerekStoffelCBC Lets rmmbr Kenji Goto
as brave man, not #ISIS victim. http://t.co/NIuoBLHEve #CBC
http://t.co/qjJzoWWTG1

D2 ISIS exhibited the video by which Kenji Goto is killed.
http://t.co/6KahTbaFYr http://t.co/oiutIpdCIi

D3 Kenji Goto’s wife announced the declaration which requests to free him
in ISIS. http://t.co/FY0Z1oKUbg http://t.co/LDmLjJfkMS

D4 Free Kenji Goto. #KenjiGoto #ISIS

D5 kenji goto death official execution by isis: http://t.co/DW5Gt72x5w
@YouTube

D6 RT @Acosta: POTUS statement on ISIS killing of Kenji Goto
http://t.co/IWAtUE7ypw

D7 Caroleina2 @NewsHour Kenji #Goto R.I.P. #ISIS are depraved blood-
thirsty maniacs. Not part of humanity.

D8 Rest in peace Kenji Goto. ISIS does not represent Islam, period.

D9 RT @Yunghi: “Kenji Goto’s reporting is voice of humanity in times of
atrocity” https://t.co/hFKdisfRDt #kenjigoto #isis

D10 RT @rcampbelltokyo: More samples from Kenji Goto’s blog!
#IAMKENJI #ISIS #JapaneseHostage. https://t.co/CXsxCCl3xX

including its full name in the producer’s name space). Ta-
ble IV, and Table V show 10 tweets on topics S8 and S2 from
Table III, respectively. Observe that these subsequent queries
return much more targetted results.

The point to emphasize here is that we were able to control
the level of specificity of query results simply by follow-
ing the shortest-shared-prefix-first transmission order (starting
with different nodes in the tree). This order was efficiently
approximated in the InfoMax transport layer that is completely
unaware of application semantics. The only interface each
application used in the above examples was to request content
from subtrees, matching a specific prefix in the producer’s
name space. Very importantly, not all content matching the
consumer’s query was retrieved but only a very small sampling
in each case. The size of the sample was determined by
the consumer. By following the InfoMax retrieval order, the



samples were properly diversified to offer a broad coverage
of each query using the small number of retrieved objects.
We believe this diversified sub-sampling capability will be of
increasing value to many emerging data-centric applications,
where data over-abundance is the norm.

V. RELATED WORK

With the growing demand on data oriented applications,
many recent proposals advertised moving from host- to
content-oriented networking. Information-centric networks,
such as NDN, espouse named content rather than named hosts,
as a central abstraction. The result retains the simplicity and
scalability of IP but offers better security, delivery efficiency,
and disruption tolerance.

Our paper leverages NDN [12] to offer a transport layer
solution that reduces redundancy in a representative category
of modern data sets. The problem of data redundancy was
described initially by a subset of the authors in Photonet [13],
[14]. A protocol was designed to prioritize images forwarding
and replacement in a disruption-tolerant network depending
on the degree of similarity (or dissimilarity) among them.
Minerva [15] presented an information-centric programming
paradigm and toolkit for social sensing that generalizes Pho-
toNet to arbitrary content types. Related ideas that exploit
a hierarchical data organization were presented in recent
work [16], [17].

Our paper falls in the category of saving resource by
reducing data transmission volume. Much work was done in
this area over the decades, from compressing data [18], [19],
[20] to selectively sending a subset [21], [22]. Our research
is closer to the latter category. It is unique in exploiting a
generic scheme that sits in a transport layer and does not
require application-specific knowledge. An advantage of this
approach is that different applications can use it, instead of
relying on their own application-specific solutions.

Work that comes most closely to ours is the Information
Funnel [4]. It focuses on the data collection side, whereas the
current paper focused on dissemination. The two combined
offer an end-to-end solution for data-intensive services that
collect data from many sources and offer it to many consumers
in an information rich world marked by data over-abundance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new transport layer protocol
to sub-samples big data sets. This protocol is built on top of
NDN and exploit its hierarchical name structure. By observing
that data objects with a longer shared prefix have more
semantic similarity, InfoMax produces (an approximation of)
the shortest shared prefix order among transmitted data objects
to minimize data redundancy. It allows multiple consumers
to retrieve data at different configurable levels of detail from
one producer while maximally leveraging NDN caching to
minimize producer overhead. InfoMax has been deployed on
a nation-wide testbed. Analysis of long-term experiences with
this deployment is deferred to a subsequent publication.

REFERENCES

[1] E. Elijah, “Information output is growing exponentially: 3 strategies for
laboratory data management,” http://accelrys.com/, May 2014.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Computer Communication Review (CCR), July 2014.

[3] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-
driven layered multicast,” SIGCOMM Comput. Commun. Rev.,
vol. 26, no. 4, pp. 117–130, Aug. 1996. [Online]. Available:
http://doi.acm.org/10.1145/248157.248168

[4] S. Wang, T. Abdelzaher, S. Gajendran, A. Herga, S. Kulkarni, S. Li,
H. Liu, C. Suresh, A. Sreenath, H. Wang, W. Dron, A. Leung, R. Govin-
dan, and J. Hancock, “The information funnel: Exploiting named data
for information-maximizing data collection,” in Proc. International
Conference on Distributed Computing in Sensor Systems, May 2014.

[5] M. T. Amin, S. Li, M. R. Rahman, P. Seetharamu, S. Wang, T. Ab-
delzaher, I. Gupta, M. Srivatsa, R. Ganti, R. Ahmed, and H. Le,
“SocialTrove: A self-summarizing storage service for social sensing,”
in Proc. International Conference on Autonomic Computing (ICAC’15),
July 2015.

[6] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing
building management systems using named data networking,” Network,
IEEE, vol. 28, no. 3, pp. 50–56, May 2014.

[7] “C++ infomax,” https://github.com/infomaxndn/InfoMax-CXX.
[8] “Infomax consumer for ios,” https://github.com/infomaxndn/InfoMax-

ConsumerSwift.
[9] Washington University in St. Louis, “NDN testbed,”

http://ndnmap.arl.wustl.edu.
[10] NFD developers, “NFD tutorial,” http://named-

data.net/doc/NFD/current/INSTALL.html.
[11] “Apollo twitter search ios client built on infomax,”

https://github.com/infomaxndn/ApolloExample.
[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.

Briggs, and R. L. Braynard, “Networking named content,” SIGCOMM,
December 2009.

[13] M. Y. S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and
T. Huang, “Photonet: A similarity-aware picture delivery service for
situation awareness,” Proceedings of the 2011 IEEE 32nd Real-Time
Systems Symposium, pp. 317–326, November 2011.

[14] M. Y. S. Uddin, M. T. A. Amin, T. Abdelzaher, A. Iyengar, and
R. Govindan, “Photonet+: Outlier-resilient coverage maximization in
visual sensing applications,” Proceedings of the 11th International
Conference on Information Processing in Sensor Networks, April 2012.

[15] S. Wang, S. Hu, S. Li, H. Liu, M. Uddin, and T. Abdelzaher, “Minerva:
Information-centric programming for social sensing,” Proceedings of
the 22nd International Conference on Computer Communications and
Networks, pp. 1–9, July 2013.

[16] W. Dron, A. Leung, M. Uddin, S. Wang, T. Abdelzaher, R. Govindan,
and J. Hancock, “Information-maximizing caching in ad hoc networks
with named data networking,” Proceedings of Network Science Work-
shop, pp. 90–93, 2013.

[17] S. Kumar, L. Shu, S. Gil, N. Ahmed, D. Katabi, and D. Rus, “Carspeak:
A content-centric network for autonomous driving,” Proceedings of ACM
SIGCOMM, pp. 259–270, 2012.

[18] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer,
“Network correlated data gathering with explicit communication: Np-
completeness and algorithms,” IEEE/ACM Transactions on Networking,
pp. 41–54, 2006.

[19] S. Pattem, B. Krishnamachari, and R. Govindan, “The impact of spatial
correlation on routing with compression in wireless sensor networks,”
ACM Transactions on Sensor Networks (TOSN), vol. 4, no. 24, 2008.

[20] M. C. Vuran, zgr B. Akan, and I. F. Akyildiz, “Spatio-temporal corre-
lation: theory and applications for wireless sensor networks,” Computer
Networks Journal (Elsevier), pp. 245–259, January 2004.

[21] H. Gupta, V. Navda, S. Das, and V.Chowdhary, “Efficient gathering
of correlated data in sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 4, no. 4, January 2008.

[22] C. Liu, K. Wu, and J. Pei, “An energy-efficient data collection framework
for wireless sensor networks by exploiting spatiotemporal correlation,”
IEEE Transaction on Parallel Distributed System, pp. 1011–1023, 2007.


